Influence of unlike dispersion interactions in modeling methane clathrate hydrate

Studies of the thermodynamic stability of clathrate hydrates of natural gas (mostly methane) is important in fields such as offshore gas exploitation and energy storage. Two approaches were used to study the effect of unlike dispersion interactions on methane clathrate hydrates: grand canonical Monte Carlo simulations (which yield adsorption data directly and can be used to infer phase equilibria), and estimation of the heat of dissociation coupled with the Clausius–Clapeyron equation (to calculate the phase equilibria, at the expense of providing no information about the adsorption behavior). It was found that the adsorption isotherm parameters change monotonically with respect to unlike dispersion interactions, although a perfect fit to experimentally-derived values may not be possible, at least using the force fields considered in this study. The heat of dissociation changes monotonically due to changes in the unlike dispersion interaction, and a best fit value of the Berthelot correction factor is achieved.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  Ioannis N. Tsimpanogiannis,et al.  Evaluation of the Hydrogen-Storage Capacity of Pure H2 and Binary H2-THF Hydrates with Monte Carlo Simulations , 2008 .

[3]  E. Karakatsani,et al.  Thermodynamic Modeling of Natural Gas Systems Containing Water , 2013 .

[4]  Richard J. Sadus,et al.  Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation , 1999 .

[5]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .

[6]  J. McCoubrey,et al.  Intermolecular forces between unlike molecules. A more complete form of the combining rules , 1960 .

[7]  C. Vega,et al.  Determining the three-phase coexistence line in methane hydrates using computer simulations. , 2010, The Journal of chemical physics.

[8]  G. D. Holder,et al.  Choice of cell size in the cell theory of hydrate phase gas-water interactions , 1981 .

[9]  Alex Zunger,et al.  Cation and vacancy ordering in Li x CoO 2 , 1998 .

[10]  C. Vega,et al.  Note: a simple correlation to locate the three phase coexistence line in methane-hydrate simulations. , 2013, The Journal of chemical physics.

[11]  Kenneth R. Hall,et al.  An algebraic method that includes Gibbs minimization for performing phase equilibrium calculations for any number of components or phases , 2003 .

[12]  Brian J. Anderson,et al.  Accurate Potentials for Argon−Water and Methane−Water Interactions via ab Initio Methods and Their Application to Clathrate Hydrates , 2004 .

[13]  B. Ruscic,et al.  The ionization potentials of CH4 and CD4 , 1987 .

[14]  Keith B. Snow,et al.  Mass spectrum, ionization potential, and appearance potentials for fragment ions of sulfuric acid vapor , 1990 .

[15]  T. Reed The Theoretical Energies of Mixing for Fluorocarbon-Hydrocarbon Mixtures. , 1955 .

[16]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[17]  D. Prada-Gracia,et al.  Water structure-forming capabilities are temperature shifted for different models. , 2012, The journal of physical chemistry. B.

[18]  W. Cochran,et al.  Dielectric constants and lattice vibrations , 1962 .

[19]  A. Stubos,et al.  On the limitation of the van der Waals-Platteeuw-based thermodynamic models for hydrates with multiple occupancy of cavities , 2012 .

[20]  G. D. Holder,et al.  Contribution of second and subsequent water shells to the potential energy of guest-host interactions in clathrate hydrates , 1982 .

[21]  Y. Guissani,et al.  A computer simulation study of the temperature dependence of the hydrophobic hydration , 1993 .

[22]  J. Tester,et al.  Application of the cell potential method to predict phase equilibria of multicomponent gas hydrate systems. , 2005, The journal of physical chemistry. B.

[23]  Hans Hasse,et al.  ms2: A molecular simulation tool for thermodynamic properties , 2011, Comput. Phys. Commun..

[24]  R. L. Rowley,et al.  SOME EFFECTS OF DEVIATIONS FROM THE LORENTZ-BERTHELOT COMBINING RULES FOR MIXTURES OF LENNARD-JONES FLUIDS , 1997 .

[25]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[26]  G. D. Holder,et al.  Langmuir constants for spherical and linear molecules in clathrate hydrates. Validity of the cell theory , 1985 .

[27]  H. Hasse,et al.  Grand Equilibrium: vapour-liquid equilibria by a new molecular simulation method , 2002, 0905.0612.

[28]  A. Mohammadi,et al.  Phase equilibria of methane clathrate hydrate from grand canonical Monte Carlo simulations , 2014 .

[29]  E. D. Sloan,et al.  Hydrate dissociation enthalpy and guest size , 1992 .

[30]  H. A. Lorentz Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase , 1881 .

[31]  K. Yasuoka,et al.  Thermodynamic stability of type-I and type-II clathrate hydrates depending on the chemical species of the guest substances. , 2007, The Journal of chemical physics.

[32]  Liam C. Jacobson,et al.  A methane-water model for coarse-grained simulations of solutions and clathrate hydrates. , 2010, The journal of physical chemistry. B.

[33]  M. Cathelineau,et al.  Improvements in clathrate modelling: I. The H2O-CO2 system with various salts , 1996 .

[34]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[35]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[36]  E. D. Sloan,et al.  Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry , 2008 .

[37]  E. Hammerschmidt Formation of Gas Hydrates in Natural Gas Transmission Lines , 1934 .

[38]  Gerald D. Holder,et al.  A generalized model for predicting equilibrium conditions for gas hydrates , 1985 .

[39]  A. Duarte,et al.  Phase Equilibrium Measurements of Structure sH Hydrogen Clathrate Hydrates with Various Promoters , 2009 .

[40]  J. Delhommelle,et al.  Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation , 2001 .

[41]  A. Galindo,et al.  A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate. , 2006, The Journal of chemical physics.

[42]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[43]  A. Mohammadi,et al.  On the application of binary correction factors in lattice distortion calculations for methane clathrate hydrates , 2014 .

[44]  Dietmar Paschek Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models. , 2004, The Journal of chemical physics.

[45]  C. Peters,et al.  Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters , 2011 .

[46]  Richard A. Dawe,et al.  Review of ways to transport natural gas energy from countries which do not need the gas for domestic use , 2003 .

[47]  G. D. Holder,et al.  Phase Behavior in Systems Containing Clathrate Hydrates: A Review , 1988 .

[48]  Jeffrey J. Potoff,et al.  Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture , 1998 .

[49]  J. Tester,et al.  Configurational properties of water clathrates: Monte Carlo and multidimensional integration versus the Lennard-Jones and Devonshire approximation , 1999 .

[50]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[51]  D. Avlonitis The determination of kihara potential parameters from gas hydrate data , 1994 .

[52]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[53]  J. M. Prausnitz,et al.  Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures , 1972 .

[54]  Margaret Nichols Trans , 2015, De-centering queer theory.

[55]  G. D. Holder,et al.  Hydrate dissociation pressure minima in multicomponent systems , 1982 .

[56]  S. Saito,et al.  Hydrates at high pressures: Part I. Methane‐water, argon‐water, and nitrogen‐water systems , 1964 .

[57]  L. Ojamäe,et al.  Structures of the I-, II- and H-methane clathrates and the ice-methane clathrate phase transition from quantum-chemical modeling with force-field thermal corrections. , 2011, The journal of physical chemistry. A.

[58]  E. Johansson,et al.  Phase-dependent energy cross-parameters in a monatomic binary fluid system , 2012 .

[59]  G. D. Holder,et al.  A theory of lattice distortion in gas hydrates , 1999 .

[60]  I. Economou,et al.  Influence of combining rules on the cavity occupancy of clathrate hydrates by Monte Carlo simulations , 2014 .

[61]  A. Galindo,et al.  Prediction of binary intermolecular potential parameters for use in modelling fluid mixtures , 2008 .

[62]  A. Stubos,et al.  Monte Carlo study of sII and sH argon hydrates with multiple occupancy of cages , 2008 .

[63]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[64]  I. Economou,et al.  Influence of combining rules on the cavity occupancy of clathrate hydrates using van der Waals–Platteeuw-theory-based modelling , 2014 .

[65]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[66]  I. Langmuir THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. , 1918 .

[67]  E. D. Sloan,et al.  Gas storage in structure H hydrates , 1998 .

[68]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .