Linear sparse differential resultant formulas

Abstract Let P be a system of n linear nonhomogeneous ordinary differential polynomials in a set U of n − 1 differential indeterminates. Differential resultant formulas are presented to eliminate the differential indeterminates in U from P . These formulas are determinants of coefficient matrices of appropriate sets of derivatives of the differential polynomials in P , or in a linear perturbation P e of P . In particular, the formula ∂ FRes ( P ) is the determinant of a matrix M ( P ) having no zero columns if the system P is “super essential”. As an application, if the system P is sparse generic, such formulas can be used to compute the differential resultant ∂ Res ( P ) introduced by Li et al. (2011) [19] .

[1]  Xiao-Shan Gao,et al.  Sparse differential resultant for laurent differential polynomials , 2013, ACCA.

[2]  Giuseppa Carrà Ferro A Resultant Theory for Ordinary Algebraic Differential Equations , 1997, AAECC.

[3]  Oleg Golubitsky,et al.  Algebraic transformation of differential characteristic decompositions from one ranking to another , 2009, J. Symb. Comput..

[4]  Xiao-Shan Gao,et al.  Implicitization of differential rational parametric equations , 2003, J. Symb. Comput..

[5]  Evelyne Hubert,et al.  Resolvent Representation for Regular Differential Ideals , 2003, Applicable Algebra in Engineering, Communication and Computing.

[6]  C. D'Andrea Macaulay style formulas for sparse resultants , 2001 .

[7]  John F. Canny,et al.  A subdivision-based algorithm for the sparse resultant , 2000, JACM.

[8]  Marc Moreno Maza,et al.  Computing differential characteristic sets by change of ordering , 2010, J. Symb. Comput..

[9]  Ioannis Z. Emiris,et al.  Implicitization of curves and surfaces using predicted support , 2012, SNC '11.

[10]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[11]  Xiao-Shan Gao,et al.  Matrix Formulae of Differential Resultant for First Order Generic Ordinary Differential Polynomials , 2012, ASCM.

[12]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[13]  Agnes Szanto,et al.  A bound for orders in differential Nullstellensatz , 2008, 0803.0160.

[14]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[15]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[16]  D. Kirby THE ALGEBRAIC THEORY OF MODULAR SYSTEMS , 1996 .

[18]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[19]  Bernd Sturmfels,et al.  On the Newton Polytope of the Resultant , 1994 .

[20]  Xiao-Shan Gao,et al.  Intersection theory in differential algebraic geometry: Generic intersections and the differential Chow form , 2010, Transactions of the American Mathematical Society.

[21]  François Boulier,et al.  Differential Elimination and Biological Modelling , 2006 .

[22]  Xiao-Shan Gao,et al.  Intersection Theory for Generic Differential Polynomials and Differential Chow Form , 2010, ArXiv.

[23]  Bernd Sturmfels,et al.  Tropical Implicitization and Mixed Fiber Polytopes , 2007, ArXiv.

[24]  J. Rafael Sendra,et al.  Linear complete differential resultants and the implicitization of linear DPPEs , 2010, J. Symb. Comput..

[25]  Sonia L. Rueda A perturbed differential resultant based implicitization algorithm for linear DPPEs , 2011, J. Symb. Comput..

[26]  Xiao-Shan Gao,et al.  Sparse differential resultant , 2011, ISSAC '11.