Local Quasi-Monte Carlo Exploration

In physically-based image synthesis, the path space of light transport paths is usually explored by stochastic sampling. The two main families of algorithms are Monte Carlo/quasi-Monte Carlo sampling and Markov chain Monte Carlo. While the former is known for good uniform discovery of important regions, the latter facilitates efficient exploration of local effects. We introduce a hybrid sampling technique which uses quasi-Monte Carlo points to achieve good stratification in both stages: we use the Halton sequence to generate initial seed paths and rank-1 lattices for local exploration. This method avoids the hard problem of introducing QMC sequences into MCMC while still stratifying samples both globally and locally. We propose perturbation strategies that prefer dimensions close to the camera, facilitating efficient reuse of transport path suffixes. This framework provides maximum control of the sampling scheme by the programmer, which can be hard to achieve with Markov chain-based methods. We show that local QMC exploration can generate results on par with state of the art light transport sampling methods, while providing more uniform convergence, improving temporal consistency.

[1]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[2]  Luca Fascione,et al.  The path tracing revolution in the movie industry , 2015, SIGGRAPH Courses.

[3]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[4]  A. Owen,et al.  Consistency of Markov chain quasi-Monte Carlo on continuous state spaces , 2011, 1105.1896.

[5]  Àlex Méndez-Feliu,et al.  Reusing Frames in Camera Animation , 2006, J. WSCG.

[6]  Jaroslav Krivánek,et al.  Adjoint-driven Russian roulette and splitting in light transport simulation , 2016, ACM Trans. Graph..

[7]  Toshiya Hachisuka,et al.  Multiplexed metropolis light transport , 2014, ACM Trans. Graph..

[8]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[9]  Derek Nowrouzezahrai,et al.  Unifying points, beams, and paths in volumetric light transport simulation , 2014, ACM Trans. Graph..

[10]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[11]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[12]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[13]  Parris K. Egbert,et al.  Energy redistribution path tracing , 2005, SIGGRAPH 2005.

[14]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Eurographics.

[15]  Tobias Ritschel,et al.  On-line learning of parametric mixture models for light transport simulation , 2014, ACM Trans. Graph..

[16]  Su Chen,et al.  New Inputs and Methods for Markov Chain Quasi-Monte Carlo , 2012 .

[17]  Jaakko Lehtinen,et al.  Gradient-domain path tracing , 2015, ACM Trans. Graph..

[18]  Anton Kaplanyan,et al.  Improved Half Vector Space Light Transport , 2015, Comput. Graph. Forum.

[19]  László Szirmay-Kalos,et al.  Automatic Parameter Control for Metropolis Light Transport , 2013, Eurographics.

[20]  Johannes Hanika,et al.  Hero Wavelength Spectral Sampling , 2014, Comput. Graph. Forum.

[21]  Alexander Keller,et al.  Efficient Bidirectional Path Tracing by Randomized Quasi-Monte Carlo Integration , 2002 .

[22]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[23]  Csaba Kelemen,et al.  Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm , 2001 .

[24]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[25]  Jacopo Pantaleoni,et al.  Charted metropolis light transport , 2016, ACM Trans. Graph..

[26]  Jaakko Lehtinen,et al.  Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering , 2015, Comput. Graph. Forum.

[27]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[28]  Alexander Keller,et al.  Enumerating Quasi-Monte Carlo Point Sequences in Elementary Intervals , 2012 .

[29]  Luca Fascione,et al.  Manifold Next Event Estimation , 2015, Comput. Graph. Forum.

[30]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[31]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[32]  Synge Todo,et al.  Markov chain Monte Carlo method without detailed balance. , 2010, Physical review letters.

[33]  Peter Shirley,et al.  Generation of Stratified Samples for B-Spline Pixel Filtering , 2005, J. Graph. Tools.