Real-time monitoring of nucleation-growth cycle of carbon nanoparticles in acetylene plasmas

Quantum cascade laserabsorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticlenucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generatingplasmas.

[1]  J. Benedikt,et al.  The role of C2H4 for the acetylene chemistry in particle forming Ar/He/C2H2 plasmas studied via quantitative mass spectrometry , 2009 .

[2]  P. Haaland,et al.  Ionic and neutral growth of dust in plasmas , 1996 .

[3]  Er-Ping Li,et al.  Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells , 2009 .

[4]  Miran Mozetič,et al.  Behaviour of oxygen atoms near the surface of nanostructured Nb2O5 , 2007 .

[5]  I. Platzner,et al.  Condensation reactions in a microwave-induced acetylene plasma , 1982 .

[6]  J. Doyle Chemical kinetics in low pressure acetylene radio frequency glow discharges , 1997 .

[7]  J. W. C. Johns,et al.  The bending energy levels of C2H2 , 1991 .

[8]  André Anders,et al.  Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field , 2002 .

[9]  A. Anders Atomic scale heating in cathodic arc plasma deposition , 2002 .

[10]  Davide Mariotti,et al.  Plasma-driven self-organization of Ni nanodot arrays on Si(100) , 2008 .

[11]  Kostya Ostrikov,et al.  Control of energy and matter at nanoscales: challenges and opportunities for plasma nanoscience in a sustainability age , 2011 .

[12]  J. Röpcke,et al.  Tunable Diode Laser Diagnostic Studies of H2-Ar-O2 Microwave Plasmas Containing Methane or Methanol , 1999 .

[13]  A. Bogaerts,et al.  Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Gary S. Selwyn,et al.  In situ laser diagnostic studies of plasma‐generated particulate contamination , 1989 .

[15]  C. Hollenstein The physics and chemistry of dusty plasmas , 2000 .

[16]  T. Hattori,et al.  H 2 Partial Pressure Dependences of CH 3 Radical Density and Effects of H 2 Dilution on Carbon Thin-Film Formation in RF Discharge CH 4 Plasma , 1995 .

[17]  Rui Q. Yang,et al.  High-temperature and low-threshold midinfrared interband cascade lasers , 2005 .

[18]  Michael Keidar,et al.  Investigation of a steady-state cylindrical magnetron discharge for plasma immersion treatment , 2003 .

[19]  Y. Mankelevich,et al.  Dust particle coagulation mechanism in low-pressure plasma: rapid growth and saturation stage modeling , 2008 .

[20]  I. Stefanović,et al.  Dust particle formation in low pressure Ar/CH4 and Ar/C2H2 discharges used for thin film deposition , 2003 .

[21]  Alexis T. Bell,et al.  Plasma Polymerization of Saturated and Unsaturated Hydrocarbons , 1974 .

[22]  U. Kortshagen,et al.  Plasma chemistry and growth of nanosized particles in a C2H2 RF discharge , 2001 .

[23]  U. Kortshagen,et al.  Modeling of particulate coagulation in low pressure plasmas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  J. Winter,et al.  Size dependence of optical properties and internal structure of plasma grown carbonaceous nanoparticles studied by in situ Rayleigh-Mie scattering ellipsometry , 2006 .

[25]  G. Kroesen,et al.  Measurement of the gas temperature in fluorocarbon radio frequency discharges using infrared absorption spectroscopy , 1996 .

[26]  R. Basner,et al.  Electron stochastic heating in a capacitively coupled low-pressure argon rf-discharge , 2009 .

[27]  P. Maguire,et al.  Acetylene–argon plasmas measured at a biased substrate electrode for diamond-like carbon deposition: I. Mass spectrometry , 2011 .

[28]  Yukio Watanabe,et al.  Formation and behaviour of nano/micro-particles in low pressure plasmas , 2006 .

[29]  Dc Daan Schram,et al.  Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature , 2008 .

[30]  C. Hollenstein,et al.  Investigations of CH4, C2H2 and C2H4 dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry , 1999 .

[31]  Michael Keidar,et al.  Modeling of atmospheric-pressure anodic carbon arc producing carbon nanotubes , 2009 .

[32]  J. Blazek,et al.  Micro‐Particles as Electrostatic Probes for Plasma Sheath Diagnostics , 2009 .

[33]  A. Michelmore,et al.  Early Stages of Growth of Plasma Polymer Coatings Deposited from Nitrogen‐ and Oxygen‐Containing Monomers , 2010 .

[34]  Antoine Rousseau,et al.  Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review , 2006 .

[35]  J. Benedikt Plasma-chemical reactions: low pressure acetylene plasmas , 2010 .

[36]  I. Stefanović,et al.  Infrared fingerprints and periodic formation of nanoparticles in Ar/C2H2 plasmas , 2003 .

[37]  J. Goree,et al.  Fluctuations of the charge on a dust grain in a plasma , 1994 .

[38]  Alexis T. Bell,et al.  A Model for the Kinetics of Plasma Polymerization , 1977 .

[39]  Michael Keidar,et al.  Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge , 2008 .

[40]  Anthony B. Murphy,et al.  Plasma-deposited Ge nanoisland films on Si: is Stranski–Krastanow fragmentation unavoidable? , 2008 .

[41]  H. Sugai,et al.  Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions , 2001 .

[42]  Davide Mariotti,et al.  Self-organized nanostructures on atmospheric microplasma exposed surfaces , 2007 .

[43]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[44]  M. Vasile,et al.  The chemistry of radiofrequency discharges: Acetylene and mixtures of acetylene with helium, argon and xenon , 1977 .

[45]  Y. Akimov,et al.  Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. , 2009, Optics express.

[46]  I. Stefanović,et al.  The response of a capacitively coupled discharge to the formation of dust particles: Experiments and modeling , 2006 .

[47]  G. Franz,et al.  Electron heating in capacitively coupled discharges and reactive gases , 2005 .

[48]  F. Patisson,et al.  Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations , 2010 .

[49]  A. V. Filippov,et al.  Coagulation of dust grains in the plasma of an RF discharge in argon , 2009 .

[50]  I. Stefanović,et al.  Dust formation in Ar/CH4 and Ar/C2H2 plasmas , 2009 .

[51]  G. Kroesen,et al.  Measurements of radical densities in radio‐frequency fluorocarbon plasmas using infrared absorption spectroscopy , 1994 .

[52]  Igor Levchenko,et al.  Hydrogen in plasma-nanofabrication : selective control of nanostructure heating and passivation , 2010 .

[53]  K. Ostrikov,et al.  Thermodynamical and plasma-driven kinetic growth of high-aspect-ratio nanostructures: effect of hydrogen termination , 2009 .

[54]  Kostya Ostrikov,et al.  Dynamic self-organization phenomena in complex ionized gas systems : new paradigms and technological aspects , 2004 .

[55]  L. Couëdel,et al.  Self-excited void instability during dust particle growth in a dusty plasma , 2010 .