Digital Adaptive Calibration of Data Converters Using Independent Component Analysis

The theory and practice of applying a neural network model and learning algorithm—Independent Component Analysis (ICA)—to the online adaptive calibration of analog-to-digital converters (ADCs) is covered in this chapter. Exploiting the independence between the input signal and an injected pseudorandom bit sequence (PRBS), the technique attempts to blindly separate the two in the digital conversion output, and while doing so, an equivalent model of the ADC non-idealities is identified, resulting in the subsequent linearization of the conversion process. The ICA framework offers new signal-processing insights into the widely used correlation-based error-parameter identification method for the background calibration of multistage ADCs. In addition, it provides a useful technique to minimize the analog overhead associated with the calibration by simultaneously identifying multiple model parameters using a single PRBS, improving the efficiency and potentially the application regime of the online calibration approach for data converters.

[1]  Rinaldo Castello,et al.  A fully digital fast convergence algorithm for nonlinearity correction in multistage ADC , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Chung-Ming Huang,et al.  A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[3]  Hung-Chih Liu,et al.  A 15 b 20 MS/s CMOS pipelined ADC with digital background calibration , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[4]  Wenbo Liu,et al.  A 12-bit, 45-MS/s, 3-mW Redundant Successive-Approximation-Register Analog-to-Digital Converter With Digital Calibration , 2011, IEEE Journal of Solid-State Circuits.

[5]  Gabor C. Temes,et al.  Adaptive compensation of analog circuit imperfections for cascaded delta-sigma ADCs , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[6]  Robert W. Brodersen,et al.  Background ADC calibration in digital domain , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[7]  Seung-Chul Lee,et al.  A 15-MHz Bandwidth 1-0 MASH $\Sigma \Delta $ ADC With Nonlinear Memory Error Calibration Achieving 85-dBc SFDR , 2014, IEEE Journal of Solid-State Circuits.

[8]  Li Ding,et al.  A 13-bit 60MS/s split pipelined ADC with background gain and mismatch error calibration , 2013, 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[9]  Stephen H. Lewis,et al.  Convergence analysis of a background interstage gain calibration technique for pipelined ADCs , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[10]  Wenbo Liu,et al.  A 12-bit 50-MS/s 3.3-mW SAR ADC with background digital calibration , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[11]  G.C. Temes,et al.  Adaptive compensation of analog circuit imperfections for cascaded /spl Sigma//spl Delta/ modulators , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[12]  Gilles Burel,et al.  Blind separation of sources: A nonlinear neural algorithm , 1992, Neural Networks.

[13]  Tai-Cheng Lee,et al.  A Split-Based Digital Background Calibration Technique in Pipelined ADCs , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  H. S. Fetterman,et al.  CMOS pipelined ADC employing dither to improve linearity , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[15]  Un-Ku Moon,et al.  "Split ADC" architecture for deterministic digital background calibration of a 16-bit 1-MS/s ADC , 2006, IEEE Journal of Solid-State Circuits.

[16]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[17]  Pierre Comon,et al.  Blind separation of sources, part II: Problems statement , 1991, Signal Process..

[18]  K. Nair,et al.  A 96 dB SFDR 50 MS/s digitally enhanced CMOS pipeline A/D converter , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[19]  Andrzej Cichocki,et al.  Robust neural networks with on-line learning for blind identification and blind separation of sources , 1996 .

[20]  P. Hurst,et al.  A digital background calibration technique for time-interleaved analog-to-digital converters , 1998, IEEE J. Solid State Circuits.

[21]  Christian Jutten,et al.  Space or time adaptive signal processing by neural network models , 1987 .

[22]  Yun Chiu,et al.  Digital calibration of inter-stage nonlinear errors in pipelined SAR ADC , 2013, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS).

[23]  T. Kuyel,et al.  A 14 b 40 MSample/s pipelined ADC with DFCA , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[24]  Un-Ku Moon,et al.  Adaptive digital correction of analog errors in MASH ADCs. II. Correction using test-signal injection , 2000 .

[25]  Borivoje Nikolic,et al.  Least mean square adaptive digital background calibration of pipelined analog-to-digital converters , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Pierre Comon,et al.  Independent component analysis, a survey of some algebraic methods , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[27]  I. Galton,et al.  A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC , 2004, IEEE Journal of Solid-State Circuits.

[28]  Abhilash Nair,et al.  "Split-ADC" Digital Background Correction of Open-Loop Residue Amplifier Nonlinearity Errors in a 14b Pipeline ADC , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[29]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[30]  Yun Chiu Recent advances in digital-domain background calibration techniques for multistep analog-to-digital converters , 2008, 2008 9th International Conference on Solid-State and Integrated-Circuit Technology.

[31]  Seung-Chul Lee,et al.  Digital Calibration of Nonlinear Memory Errors in Sigma–Delta Modulators , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  B. Murmann,et al.  A 12 b 75 MS/s pipelined ADC using open-loop residue amplification , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[33]  Seung-Chul Lee,et al.  Digital Calibration of Capacitor Mismatch in Sigma-Delta Modulators , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  Ian Galton,et al.  Digital Background Correction of Harmonic Distortion in Pipelined ADCs , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Eric A. Vittoz,et al.  CMOS Integration of Herault-Jutten Cells for Separation of Sources , 1989, Analog VLSI Implementation of Neural Systems.

[36]  Un-Ku Moon,et al.  Background calibration techniques for multistage pipelined ADCs with digital redundancy , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[37]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[38]  Craig Petrie,et al.  A background calibration technique for multibit delta-sigma modulators , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[39]  Ian Galton,et al.  Gain error correction technique for pipelined analogue-to-digital converters , 2000 .

[40]  Ian Galton Digital cancellation of D/A converter noise in pipelined A/D converters , 2000 .

[41]  Shun-ichi Amari,et al.  Adaptive blind signal processing-neural network approaches , 1998, Proc. IEEE.

[42]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[43]  Yun Chiu,et al.  An Offset Double Conversion Technique for Digital Calibration of Pipelined ADCs , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[44]  Esfandiar Sorouchyari,et al.  Blind separation of sources, part III: Stability analysis , 1991, Signal Process..

[45]  P.G.A. Jespers,et al.  A CMOS 13-b cyclic RSD A/D converter , 1992, IEEE Journal of Solid-State Circuits.

[46]  Stephen H. Lewis,et al.  A 10-b 20-Msample/s analog-to-digital converter , 1992 .

[47]  Bang-Sup Song,et al.  A 15b-Linear, 20MS/s, 1.5b/Stage Pipelined ADC Digitally Calibrated with Signal-Dependent Dithering , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[48]  D.A. Johns,et al.  An 11-Bit 45 MS/s Pipelined ADC With Rapid Calibration of DAC Errors in a Multibit Pipeline Stage , 2007, IEEE Journal of Solid-State Circuits.

[49]  Wenbo Liu,et al.  A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90dB SFDR , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[50]  M. K. Mayes,et al.  A 200 mW, 1 Msample/s, 16-b pipelined A/D converter with on-chip 32-b microcontroller , 1996 .

[51]  Ian Galton,et al.  A 130 mW 100 MS/s Pipelined ADC With 69 dB SNDR Enabled by Digital Harmonic Distortion Correction , 2009, IEEE Journal of Solid-State Circuits.

[52]  E. Oja,et al.  Independent Component Analysis , 2013 .