Bowing parameter of the band-gap energy of GaNxAs1−x

We report a study of nitrogen incorporation in GaAs using a N rf plasma source. The N composition can be increased by lowering the growth temperature. X-ray diffraction shows no phase separation. Optical absorption measurements indicate that GaNxAs1−x is a direct band-gap material in the N composition range studied (x⩽14.8%), rather than a semimetal, contrary to theoretical predictions based on Van Vechten’s model. Analyzing the N composition dependence of the band-gap energy of the alloy indicates a composition-dependent bowing parameter, consistent with the first-principles supercell calculations [L. Bellaiche, S. H. Wei, and A. Zunger, Phys. Rev. B 54, 17 568 (1996)].

[1]  Michio Sato Growth of GaAsN by low-pressure metalorganic chemical vapor deposition using plasma-cracked N2 , 1994 .

[2]  Markus Weyers,et al.  Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers , 1992 .

[3]  C. Tu,et al.  High resolution x‐ray diffraction studies of AlGaP grown by gas‐source molecular‐beam epitaxy , 1995 .

[4]  K. Cheng,et al.  Growth and luminescence properties of GaP:N and GaP1−xNx , 1992 .

[5]  Hadis Morkoç,et al.  Gallium arsenide and other compound semiconductors on silicon , 1990 .

[6]  Takashi Jimbo,et al.  High quality GaAs and GaP on Si with III V alloy SLS buffer layers , 1989 .

[7]  Mats-Erik Pistol,et al.  Nitrogen pair luminescence in GaAs , 1990 .

[8]  K. Uomi,et al.  Extremely large N content (up to 10%) in GaNAs grown by gas-source molecular beam epitaxy , 1996 .

[9]  D. G. Thomas,et al.  Isoelectronic Traps Due to Nitrogen in Gallium Phosphide , 1965 .

[10]  Wei,et al.  Localization and percolation in semiconductor alloys: GaAsN vs GaAsP. , 1996, Physical review. B, Condensed matter.

[11]  K. Cheng,et al.  Luminescence quenching and the formation of the GaP1−xNx alloy in GaP with increasing nitrogen content , 1992 .

[12]  Y. Shiraki,et al.  Metalorganic vapor phase epitaxy of GaP1-xNx alloys on GaP , 1993 .

[13]  Shiro Sakai,et al.  Band Gap Energy and Band Lineup of III-V Alloy Semiconductors Incorporating Nitrogen and Boron , 1993 .

[14]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[15]  Kazuhiko Hosomi,et al.  Gas-Source Molecular Beam Epitaxy of GaNxAs1-x Using a N Radical as the N Source , 1994 .

[16]  C. T. Foxon,et al.  The growth and properties of group III nitrides , 1995 .

[17]  Wei,et al.  Giant and composition-dependent optical bowing coefficient in GaAsN alloys. , 1996, Physical review letters.

[18]  G. B. Stringfellow,et al.  Lattice-Matched InAsN(X=0.38) on GaAs Grown by Molecular Beam Epitaxy , 1996 .

[19]  M. Weyers,et al.  Growth of GaAsN alloys by low‐pressure metalorganic chemical vapor deposition using plasma‐cracked NH3 , 1993 .

[20]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[21]  R. Davis III-V nitrides for electronic and optoelectronic applications , 1991, Proc. IEEE.

[22]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[23]  E. Cohen,et al.  Thermal quenching processes in the low temperature photoluminescence of excitons bound to nitrogen pairs in GaP , 1977 .

[24]  S. G. Bishop,et al.  Band gap bowing in GaP1−xNx alloys , 1993 .

[25]  Zhao,et al.  Electronic structure of the substitutional nitrogen NN1 pair in GaP from photoluminescence excitation and Zeeman spectroscopy. , 1988, Physical review. B, Condensed matter.

[26]  C. T. Foxon,et al.  The growth and properties of mixed group V nitrides , 1995 .