Exploration of Climate Data Using Interactive Visualization

In atmospheric and climate research, the increasing amount of data available from climate models and observations provides new challenges for data analysis. The authors present interactive visual exploration as an innovative approach to handle large datasets. Visual exploration does not require any previous knowledge about the data, as is usually the case with classical statistics. It facilitates iterative and interactive browsing of the parameter space to quickly understand the data characteristics, to identify deficiencies, to easily focus on interesting features, and to come up with new hypotheses about the data. These properties extend the common statistical treatment of data, and provide a fundamentally different approach. The authors demonstrate the potential of this technology by exploring atmospheric climate data from different sources including reanalysis datasets, climate models, and radio occultation satellite data. Results are compared to those from classical statistics, revealing the complementary advantages of visual exploration. Combining both the analytical precision of classical statistics and the holistic power of interactive visual exploration, the usual workflow of studying climate data can be enhanced.

[1]  Jens Wickert,et al.  Assessing the climate monitoring utility of Radio Occultation data: from CHAMP to FORMOSAT-3/COSMIC. , 2009 .

[2]  Le Gruenwald,et al.  A survey of data mining and knowledge discovery software tools , 1999, SKDD.

[3]  Heidrun Schumann,et al.  Visual Methods for Analyzing Time-Oriented Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[5]  Helwig Hauser,et al.  Hypothesis Generation in Climate Research with Interactive Visual Data Exploration , 2008, IEEE Transactions on Visualization and Computer Graphics.

[6]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[7]  Helwig Hauser,et al.  Smooth Brushing for Focus+Context Visualization of Simulation Data in 3D , 2002, WSCG.

[8]  Jerome H. Friedman,et al.  DATA MINING AND STATISTICS: WHAT''S THE CONNECTION , 1997 .

[9]  Bill Hibbard,et al.  Visualization in earth system science , 2002, COMG.

[10]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[11]  Andreas Buja,et al.  XGobi: Interactive Dynamic Data Visualization in the X Window System , 1998 .

[12]  Andreas Kolb,et al.  GPU-based Dynamic Flow Visualization for Climate Research Applications , 2007, SimVis.

[13]  Robert Sausen,et al.  Identification of anthropogenic climate change using a second-generation reanalysis , 2004 .

[14]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[15]  Daniela Giovanna Calò,et al.  Data Mining and Statistics: what's the connection? , 2009 .

[16]  Ying-Hwa Kuo,et al.  Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers , 2009 .

[17]  Gottfried Kirchengast,et al.  Trend Indicators of Atmospheric Climate Change Based on Global Climate Model Scenarios , 2009 .

[18]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[19]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[20]  Heidrun Schumann,et al.  Visualisierung - Grundlagen und allgemeine Methoden , 2000 .

[21]  Heike Hofmann,et al.  Glaciers melt as mountains warm: a graphical case study , 2010, Comput. Stat..

[22]  Helmut Doleisch,et al.  SimVis: An Interactive Visual Field Exploration Tool Applied to Climate Research , 2009 .

[23]  Mihael Ankerst,et al.  Visual Data Mining , 2001, Encyclopedia of GIS.

[24]  U. Foelsche,et al.  Atmospheric temperature change detection with GPS radio occultation 1995 to 2008 , 2009 .

[25]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[26]  Christer Sjöström,et al.  State-of-the-art report , 1997 .

[27]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[28]  Rolf König,et al.  The Radio Occultation Experiment aboard CHAMP: Operational Data Analysis and Validation of Vertical Atmospheric Profiles , 2004 .

[29]  Eugene C. Cordero,et al.  Stratospheric variability and trends in models used for the IPCC AR4 , 2006 .

[30]  松山 洋 「Statistical Methods in the Atmospheric Sciences(2nd edition), International Geophysics Series 91」, Daniel S. Wilks著, Academic Press, 2005年11月, 648頁, $94.95, ISBN978-0-12-751966-1(本だな) , 2010 .

[31]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[32]  Dianne Cook,et al.  Visual Data Mining In Atmospheric Science Data , 2000, Data Mining and Knowledge Discovery.

[33]  T. Nocke,et al.  Visualization of Climate and Climate Change Data : An Overview , 2008 .

[34]  Kwan-Liu Ma,et al.  Correlation study of time-varying multivariate climate data sets , 2009, 2009 IEEE Pacific Visualization Symposium.

[35]  Helwig Hauser,et al.  Visualization of Multi‐Variate Scientific Data , 2009, Comput. Graph. Forum.

[36]  Heidrun Schumann,et al.  Visual Data Mining , 2002, Eurographics.

[37]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.