Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition

[1]  National Institute of Standards,et al.  Structural analysis of multilayer graphene via atomic moiré interferometry , 2010, 1001.2798.

[2]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[3]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[4]  F. Guinea,et al.  Dirac cones reshaped by interaction effects in suspended graphene (vol 7, pg 701, 2011) , 2011, 1104.1396.

[5]  S. Okada Energetics of nanoscale graphene ribbons : Edge geometries and electronic structures , 2008 .

[6]  Yang Wang,et al.  Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. , 2011, Nano letters.

[7]  S. Sarma,et al.  Measurement of scattering rate and minimum conductivity in graphene. , 2007, Physical review letters.

[8]  M. Katsnelson,et al.  Electron scattering on microscopic corrugations in graphene , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  T. Booth,et al.  Discrete dynamics of nanoparticle channelling in suspended graphene. , 2011, Nano letters.

[10]  R. Buizza,et al.  Graphene growth on h-BN by molecular beam epitaxy , 2012, 1204.2443.

[11]  M. Jiang,et al.  Triggering the Continuous Growth of Graphene Toward Millimeter‐Sized Grains , 2012, 1207.4644.

[12]  P. Datskos,et al.  Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. , 2011, ACS nano.

[13]  K. Novoselov,et al.  Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging , 2010 .

[14]  M. Dresselhaus,et al.  Synthesis of patched or stacked graphene and hBN flakes: a route to hybrid structure discovery. , 2013, Nano letters.

[15]  K. Shintani,et al.  Molecular dynamics study of energetics of graphene flakes , 2009 .

[16]  S. Pei,et al.  Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. , 2010, Nature materials.

[17]  S. V. Morozov,et al.  Tunable metal-insulator transition in double-layer graphene heterostructures , 2011, 1107.0115.

[18]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[19]  S. Sarma,et al.  A self-consistent theory for graphene transport , 2007, Proceedings of the National Academy of Sciences.

[20]  Kazumasa Sunouchi,et al.  Fabrication and characterization of heterostructures with subnanometer thickness , 1984 .

[21]  T. Tanaka,et al.  A hetero-epitaxial-double-atomic-layer system of monolayer graphene/monolayer h-BN on Ni(111) , 2000 .

[22]  Steven G. Louie,et al.  Graphene at the Edge: Stability and Dynamics , 2009, Science.

[23]  W. Lu,et al.  Nucleation and growth of single crystal graphene on hexagonal boron nitride , 2012 .

[24]  G. Flynn,et al.  Structure and electronic properties of graphene nanoislands on Co(0001). , 2009, Nano letters.

[25]  D. Srolovitz,et al.  First-principles study of graphene edge properties and flake shapes , 2009, 0909.4373.

[26]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[27]  Q. Fu,et al.  Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum , 2012, Nature Communications.

[28]  T. Michely,et al.  Growth of graphene on Ir(111) , 2009 .

[29]  N. Bartelt,et al.  Graphene Islands on Cu foils: the interplay between shape, orientation, and defects. , 2010, Nano letters.

[30]  E. Wang,et al.  Patterning Graphene with Zigzag Edges by Self‐Aligned Anisotropic Etching , 2011, Advanced materials.

[31]  A. T. Johnson,et al.  Growth mechanism of hexagonal-shape graphene flakes with zigzag edges. , 2011, ACS nano.

[32]  S. Sharma,et al.  Twist boundary in graphene: energetics and electric field effect , 2008 .

[33]  J. Crain,et al.  Edge structure of epitaxial graphene islands , 2010 .

[34]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[35]  G. Flynn,et al.  Influence of copper crystal surface on the CVD growth of large area monolayer graphene , 2011 .

[36]  Pablo Jarillo-Herrero,et al.  Emergence of superlattice Dirac points in graphene on hexagonal boron nitride , 2012, Nature Physics.

[37]  P. Ajayan,et al.  Controlled nanocutting of graphene , 2008 .

[38]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[39]  Pablo Jarillo-Herrero,et al.  Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. , 2011, Nature materials.

[40]  Hee Cheul Choi,et al.  Direct growth of graphene pad on exfoliated hexagonal boron nitride surface. , 2011, Nanoscale.

[41]  P. Kim,et al.  Temperature-dependent transport in suspended graphene. , 2008, Physical review letters.

[42]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[43]  Li Gao,et al.  Epitaxial graphene on Cu(111). , 2010, Nano letters.

[44]  Jeroen van den Brink,et al.  Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations , 2007 .

[45]  K. Saiki,et al.  Structure and properties of chemically prepared nanographene islands characterized by scanning tunneling microscopy , 2010, 1006.2654.

[46]  Feng Ding,et al.  Edge structural stability and kinetics of graphene chemical vapor deposition growth. , 2012, ACS nano.

[47]  T. Michely,et al.  CORRIGENDUM: Growth of graphene on Ir(111) Growth of graphene on Ir(111) , 2009 .

[48]  L. Biró,et al.  Crystallographically selective nanopatterning of graphene on SiO2 , 2009, 0912.3092.

[49]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO 2 , 2008 .

[50]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[51]  Hui Li,et al.  Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. , 2011, Nano letters.

[52]  A. Reina,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009, Science.

[53]  J. Kong,et al.  Anisotropic etching and nanoribbon formation in single-layer graphene. , 2009, Nano letters.

[54]  Kuiper,et al.  Electronic effects in scanning tunneling microscopy: Moiré pattern on a graphite surface. , 1993, Physical review. B, Condensed matter.

[55]  Carl W. Magnuson,et al.  Graphene films with large domain size by a two-step chemical vapor deposition process. , 2010, Nano letters.

[56]  Yihong Wu,et al.  Hysteresis of electronic transport in graphene transistors. , 2010, ACS nano.

[57]  M. Heggie,et al.  Density functional calculations on the intricacies of Moiré patterns on graphite , 2007 .

[58]  Feng Wang,et al.  Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene , 2008 .

[59]  Klaus von Klitzing,et al.  Raman scattering at pure graphene zigzag edges. , 2010, Nano letters.