An Epithelial–Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance

Purpose: Epithelial–mesenchymal transition (EMT) has been associated with metastatic spread and EGF receptor (EGFR) inhibitor resistance. We developed and validated a robust 76-gene EMT signature using gene expression profiles from four platforms using non–small cell lung carcinoma (NSCLC) cell lines and patients treated in the Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) study. Experimental Design: We conducted an integrated gene expression, proteomic, and drug response analysis using cell lines and tumors from patients with NSCLC. A 76-gene EMT signature was developed and validated using gene expression profiles from four microarray platforms of NSCLC cell lines and patients treated in the BATTLE study, and potential therapeutic targets associated with EMT were identified. Results: Compared with epithelial cells, mesenchymal cells showed significantly greater resistance to EGFR and PI3K/Akt pathway inhibitors, independent of EGFR mutation status, but more sensitivity to certain chemotherapies. Mesenchymal cells also expressed increased levels of the receptor tyrosine kinase Axl and showed a trend toward greater sensitivity to the Axl inhibitor SGI-7079, whereas the combination of SGI-7079 with erlotinib reversed erlotinib resistance in mesenchymal lines expressing Axl and in a xenograft model of mesenchymal NSCLC. In patients with NSCLC, the EMT signature predicted 8-week disease control in patients receiving erlotinib but not other therapies. Conclusion: We have developed a robust EMT signature that predicts resistance to EGFR and PI3K/Akt inhibitors, highlights different patterns of drug responsiveness for epithelial and mesenchymal cells, and identifies Axl as a potential therapeutic target for overcoming EGFR inhibitor resistance associated with the mesenchymal phenotype. Clin Cancer Res; 19(1); 279–90. ©2012 AACR.

[1]  Jae Cheol Lee,et al.  Activation of the AXL Kinase Causes Resistance to EGFR-Targeted Therapy in Lung Cancer , 2012, Nature Genetics.

[2]  Edward S. Kim,et al.  The BATTLE trial: personalizing therapy for lung cancer. , 2011, Cancer discovery.

[3]  J. Mpindi,et al.  Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer , 2011, Oncogene.

[4]  Elizabeth Garrett-Mayer,et al.  ZEB1-responsive genes in non-small cell lung cancer. , 2011, Cancer letters.

[5]  Jennifer B Dennison,et al.  8-Aminoadenosine inhibits Akt/mTOR and Erk signaling in mantle cell lymphoma. , 2010, Blood.

[6]  R. Weimer,et al.  An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies , 2010, Oncogene.

[7]  Bjørn Tore Gjertsen,et al.  Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival , 2009, Proceedings of the National Academy of Sciences.

[8]  T. Mok,et al.  Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. , 2009, The New England journal of medicine.

[9]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[10]  G. Mills,et al.  Reciprocal Regulation of c-Src and STAT3 in Non-Small Cell Lung Cancer , 2009, Clinical Cancer Research.

[11]  G. Feldmann,et al.  The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target , 2009, Cancer biology & therapy.

[12]  G. Mills,et al.  Cetuximab attenuates metastasis and u-PAR expression in non-small cell lung cancer: u-PAR and E-cadherin are novel biomarkers of cetuximab sensitivity. , 2009, Cancer research.

[13]  Michael Peyton,et al.  Alterations in Genes of the EGFR Signaling Pathway and Their Relationship to EGFR Tyrosine Kinase Inhibitor Sensitivity in Lung Cancer Cell Lines , 2009, PloS one.

[14]  Kevin R. Coombes,et al.  The Bimodality Index: A Criterion for Discovering and Ranking Bimodal Signatures from Cancer Gene Expression Profiling Data , 2009, Cancer informatics.

[15]  Lesley Seymour,et al.  Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  Derek Y. Chiang,et al.  EML4-ALK Fusion Gene and Efficacy of an ALK Kinase Inhibitor in Lung Cancer , 2008, Clinical Cancer Research.

[17]  J. Clements,et al.  Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression , 2007, Journal of cellular physiology.

[18]  H. Aburatani,et al.  Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer , 2007, Nature.

[19]  P. Bunn,et al.  Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non–small cell lung carcinoma , 2007, Molecular Cancer Therapeutics.

[20]  J. Foidart,et al.  Regulation of vimentin by SIP1 in human epithelial breast tumor cells , 2006, Oncogene.

[21]  J. Minna,et al.  Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. , 2006, Cancer research.

[22]  G. Cavet,et al.  Epithelial versus Mesenchymal Phenotype Determines In vitro Sensitivity and Predicts Clinical Activity of Erlotinib in Lung Cancer Patients , 2005, Clinical Cancer Research.

[23]  Patricia L. Harris,et al.  Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  E. Brown,et al.  Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. , 2005, Cancer research.

[25]  H. Beug,et al.  Molecular requirements for epithelial-mesenchymal transition during tumor progression. , 2005, Current opinion in cell biology.

[26]  M. Ostland,et al.  Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  G. Berx,et al.  The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. , 2005, Cancer research.

[28]  Elisa Rossi,et al.  Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. , 2005, Journal of the National Cancer Institute.

[29]  L. Platanias,et al.  8-Amino-adenosine induces loss of phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, and Akt kinase: Role in induction of apoptosis in multiple myeloma , 2005, Molecular Cancer Therapeutics.

[30]  G. Berx,et al.  DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells , 2005, Oncogene.

[31]  S. Toyooka,et al.  The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[32]  J. Pollack,et al.  Immortalization of Human Bronchial Epithelial Cells in the Absence of Viral Oncoproteins , 2004, Cancer Research.

[33]  R. Wilson,et al.  EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Gabriel,et al.  EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy , 2004, Science.

[35]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[36]  K. Miyazaki,et al.  Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells , 2004, British Journal of Cancer.

[37]  Shoichiro Tsukita,et al.  Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail , 2003, Journal of Cell Science.

[38]  H. Hosokawa,et al.  Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. , 2003, International journal of oncology.

[39]  Eduard Batlle,et al.  Snail Induction of Epithelial to Mesenchymal Transition in Tumor Cells Is Accompanied by MUC1 Repression andZEB1 Expression* , 2002, The Journal of Biological Chemistry.

[40]  J. Thiery Epithelial–mesenchymal transitions in tumour progression , 2002, Nature Reviews Cancer.

[41]  Francisco Portillo,et al.  The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression , 2000, Nature Cell Biology.

[42]  A. G. Herreros,et al.  The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells , 2000, Nature Cell Biology.

[43]  J. Minna,et al.  NCI‐navy medical oncology branch cell line data base , 1996, Journal of cellular biochemistry. Supplement.

[44]  T. Chou,et al.  Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. , 1984, Advances in enzyme regulation.