Parallel Scheduling for Early Completion

This chapter assumes knowledge of some basic scheduling terminology provided in Part I of this book.We are concerned in this chapter with classical deterministic parallel scheduling with the objectiveof minimizing the makespan. Both preemptive and nonpreemptive schedules are considered. Therecan be precedence relationships between jobs. Excluded from consideration in this chapter are paral-lel scheduling models of other typical job characteristics, on-line and randomized algorithms, all of whichare covered in separate chapters of this book. We will address the following aspects of the schedulingproblems: Polynomial solvability and approximability Enumerative algorithms Polynomial-time approximationsAlthough we also consider scheduling jobs of different release dates, we will mainly concentrate onmodels of equal job release dates. The reason is as follows. If all jobs are not released at the same time, thenthe scheduling problems of minimizing the makespan can be viewed as special cases of the correspondingproblems of minimizing maximum lateness, which is dealt with in a separate chapter. To see this, notethat due to schedule symmetry on the time axis, there is an equivalence relationship (with respect to theobjective value) between scheduling of the former objective and that of the latter: To a schedule

[1]  Eugene L. Lawler,et al.  On Preemptive Scheduling of Unrelated Parallel Processors by Linear Programming , 1978, JACM.

[2]  Peter Brucker,et al.  Preemptive job-shop scheduling problems with a fixed number of jobs , 1999, Math. Methods Oper. Res..

[3]  Zhen Liu,et al.  Linear and quadratic algorithms for scheduling chains and opposite chains , 2002, Eur. J. Oper. Res..

[4]  Linus Schrage,et al.  Letter to the Editor - A Proof of the Optimality of the Shortest Remaining Processing Time Discipline , 1968, Oper. Res..

[5]  Edward G. Coffman,et al.  An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..

[6]  Edward G. Coffman,et al.  Optimal Preemptive Scheduling on Two-Processor Systems , 1969, IEEE Transactions on Computers.

[7]  M. Yue On the exact upper bound for the multifit processor scheduling algorithm , 1990 .

[8]  Jan Karel Lenstra,et al.  Approximation algorithms for scheduling unrelated parallel machines , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[9]  Oliver Braun,et al.  Parallel Processor Scheduling with Limited Number of Preemptions , 2003, SIAM J. Comput..

[10]  Jan Karel Lenstra,et al.  Complexity of Scheduling under Precedence Constraints , 1978, Oper. Res..

[11]  Oscar H. Ibarra,et al.  Heuristic Algorithms for Scheduling Independent Tasks on Nonidentical Processors , 1977, JACM.

[12]  Teofilo F. Gonzalez,et al.  A New Algorithm for Preemptive Scheduling of Trees , 1980, JACM.

[13]  Jane W.-S. Liu,et al.  Optimal scheduling of independent tasks on heterogeneous computing systems , 1974, ACM '74.

[14]  Éva Tardos,et al.  An approximation algorithm for the generalized assignment problem , 1993, Math. Program..

[15]  Edward G. Coffman,et al.  Ideal preemptive schedules on two processors , 2003, Acta Informatica.

[16]  C. N. Potts,et al.  Analysis of a linear programming heuristic for scheduling unrelated parallel machines , 1985, Discret. Appl. Math..

[17]  Shui Lam,et al.  A Level Algorithm for Preemptive Scheduling , 1977, J. ACM.

[18]  David S. Johnson,et al.  Two-Processor Scheduling with Start-Times and Deadlines , 1977, SIAM J. Comput..

[19]  Edward G. Coffman,et al.  A generalized bound on LPT sequencing , 1976, SIGMETRICS '76.

[20]  Michael A. Langston,et al.  Evaluation of a MULTIFIT-Based Scheduling Algorithm , 1986, J. Algorithms.

[21]  Ellis Horowitz,et al.  Exact and Approximate Algorithms for Scheduling Nonidentical Processors , 1976, JACM.

[22]  Joseph Y.-T. Leung,et al.  Some Results on Liu's Conjecture , 1992, SIAM J. Discret. Math..

[23]  Waleed Meleis,et al.  Lower bounds on precedence-constrained scheduling for parallel processors , 2000, Proceedings 2000 International Conference on Parallel Processing.

[24]  David S. Johnson,et al.  Scheduling Tasks with Nonuniform Deadlines on Two Processors , 1976, J. ACM.

[25]  Philippe Chrétienne,et al.  A cutting plane algorithm for the unrelated parallel machine scheduling problem , 2002, Eur. J. Oper. Res..

[26]  Gregory Dobson,et al.  Scheduling Independent Tasks on Uniform Processors , 1984, SIAM J. Comput..

[27]  Michael A. Langston,et al.  Bounds for Multifit Scheduling on Uniform Processors , 1983, SIAM J. Comput..

[28]  Wieslaw Kubiak,et al.  Scheduling identical jobs with chain precedence constraints on two uniform machines , 1999, Math. Methods Oper. Res..

[29]  M. Fujii,et al.  Optimal Sequencing of Two Equivalent Processors , 1969 .

[30]  Ronald L. Graham,et al.  Optimal scheduling for two-processor systems , 1972, Acta Informatica.

[31]  René Sitters Two NP-Hardness Results for Preemptive Minsum Scheduling of Unrelated Parallel Machines , 2001, IPCO.

[32]  E. L. Lawler,et al.  Preemptive Scheduling of. Precedence-Constrained Jobs on Parallel Machines , 1981 .

[33]  David S. Johnson,et al.  `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.

[34]  Vadim G. Timkovsky,et al.  Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity , 2003, Eur. J. Oper. Res..

[35]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[36]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[37]  Oscar H. Ibarra,et al.  Bounds for LPT Schedules on Uniform Processors , 1977, SIAM J. Comput..

[38]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[39]  Steef L. van de Velde Duality-Based Algorithms for Scheduling Unrelated Parallel Machines , 1993, INFORMS J. Comput..

[40]  Bo Chen,et al.  A note on LPT scheduling , 1993, Oper. Res. Lett..

[41]  Mauro Dell'Amico,et al.  Optimal Scheduling of Tasks on Identical Parallel Processors , 1995, INFORMS J. Comput..

[42]  David B. Shmoys,et al.  A Polynomial Approximation Scheme for Scheduling on Uniform Processors: Using the Dual Approximation Approach , 1988, SIAM J. Comput..

[43]  Donald K. Friesen,et al.  Tighter Bounds for LPT Scheduling on Uniform Processors , 1987, SIAM J. Comput..

[44]  Bo Chen,et al.  Tighter bound for MULTIFIT scheduling on uniform processors , 1991, Discret. Appl. Math..

[45]  Shui Lam,et al.  Worst Case Analysis of Two Scheduling Algorithms , 1977, SIAM J. Comput..

[46]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[47]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[48]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[49]  T. C. Hu Parallel Sequencing and Assembly Line Problems , 1961 .

[50]  Edward G. Coffman,et al.  Computer and job-shop scheduling theory , 1976 .

[51]  Paolo Toth,et al.  Exact and Approximation Algorithms for Makespan Minimization on Unrelated Parallel Machines , 1997, Discret. Appl. Math..

[52]  Robert McNaughton,et al.  Scheduling with Deadlines and Loss Functions , 1959 .

[53]  David S. Johnson,et al.  Scheduling Opposing Forests , 1983 .

[54]  Gerhard J. Woeginger,et al.  A Review of Machine Scheduling: Complexity, Algorithms and Approximability , 1998 .

[55]  Yuri N. Sotskov,et al.  Optimal makespan schedule for three jobs on two machines , 1996, Math. Methods Oper. Res..

[56]  Edward G. Coffman,et al.  Proof of the 4/3 conjecture for preemptive vs. nonpreemptive two-processor scheduling , 1991, STOC '91.

[57]  Edward G. Coffman,et al.  Preemptive Scheduling of Real-Time Tasks on Multiprocessor Systems , 1970, JACM.

[58]  Jeffrey M. Jaffe An Analysis of Preemptive Multiprocessor Job Scheduling , 1980, Math. Oper. Res..

[59]  Sigrid Knust,et al.  List scheduling in a parallel machine environment with precedence constraints and setup times , 2001, Oper. Res. Lett..

[60]  Donald K. Friesen,et al.  Tighter Bounds for the Multifit Processor Scheduling Algorithm , 1984, SIAM J. Comput..

[61]  Teofilo F. Gonzalez,et al.  Preemptive Scheduling of Uniform Processor Systems , 1978, JACM.

[62]  C. L. Liu,et al.  Optimal Scheduling on Multi-Processor Computing Systems , 1972, SWAT.