First-principles modelling of Earth and planetary materials at high pressures and temperatures

Atomic-scale materials modelling based on first-principles quantum mechanics is playing an important role in the science of the Earth and the other planets. We outline the basic theory of this kind of modelling and explain how it can be applied in a variety of different ways to probe the thermodynamics, structure and transport properties of both solids and liquids under extreme conditions. After a summary of the density functional formulation of quantum mechanics and its practical implementation through pseudopotentials, we outline the simplest way of applying first-principles modelling, namely static zero-temperature calculations. We show how calculations of this kind can be compared with static compression experiments to demonstrate the accuracy of first-principles modelling at pressures reached in planetary interiors. Noting that virtually all problems concerning planetary interiors require an understanding of materials at high temperatures as well as high pressures, we then describe how first-principles lattice dynamics gives a powerful way of investigating solids at temperatures not too close to the melting line. We show how such calculations have contributed to important progress, including the recent discovery of the post-perovskite phase of MgSiO3 in the D′′ layer at the base of the Earth's mantle. A range of applications of first-principles molecular dynamics are then reviewed, including the properties of metallic hydrogen in Jupiter and Saturn, of water, ammonia and methane in Uranus and Neptune, and of oxides and silicates and solid and liquid iron and its alloys in the Earth's deep interior. Recognizing the importance of phase equilibria throughout the planetary sciences, we review recently developed techniques for the first-principles calculation of solid and liquid free energies, melting curves and chemical potentials of alloys. We show how such calculations have contributed to an improved understanding of the temperature distribution and the chemical composition throughout the Earth's interior. The review concludes with a summary of the present state of the field and with some ideas for future developments.

[1]  Lnrr B. B. K,et al.  Structure and elasticity of MgO at high pressure , 2007 .

[2]  Jorge Kohanoff,et al.  Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods , 2006 .

[3]  Jorge Kohanoff,et al.  Electronic structure calculations for solids and molecules , 2006 .

[4]  A. Oganov,et al.  High-pressure phases of CaCO3: Crystal structure prediction and experiment , 2006 .

[5]  Alessandro Laio,et al.  Anisotropy of Earth's D″ layer and stacking faults in the MgSiO3 post-perovskite phase , 2005, Nature.

[6]  M. Alfredsson,et al.  Electronic spin state of ferric iron in Al‐bearing perovskite in the lower mantle , 2005 .

[7]  A. Oganov,et al.  In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition , 2005 .

[8]  Y. Ohishi,et al.  The Pyrite-Type High-Pressure Form of Silica , 2005, Science.

[9]  Artem R Oganov,et al.  The high-pressure phase of alumina and implications for Earth's D'' layer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  T. Duffy Synchrotron facilities and the study of the Earth's deep interior , 2005 .

[11]  D. Alfé Melting curve of MgO from first-principles simulations. , 2005, Physical review letters.

[12]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[13]  Carlo Cavazzoni,et al.  First-principles codes for computational crystallography in the Quantum-ESPRESSO package , 2005 .

[14]  L. Fried,et al.  Dynamic ionization of water under extreme conditions. , 2005, Physical review letters.

[15]  D. Dobson,et al.  Subducted banded iron formations as a source of ultralow-velocity zones at the core–mantle boundary , 2005, Nature.

[16]  D. Alfé,et al.  Schottky defect formation energy in MgO calculated by diffusion Monte Carlo , 2005, cond-mat/0503074.

[17]  M. Alfredsson,et al.  Quantum Monte Carlo calculations of the structural properties and the B1-B2 phase transition of MgO , 2005, cond-mat/0502510.

[18]  M. Gillan,et al.  Structural stability of silica at high pressures and temperatures , 2005 .

[19]  M. Gillan,et al.  The axial ratio of hcp iron at the conditions of the Earth's inner core , 2004, physics/0409109.

[20]  J. Wookey,et al.  The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO 3 , 2004 .

[21]  D. Alfé,et al.  Phonon density of states and compression behavior in iron sulfide under pressure. , 2004, Physical review letters.

[22]  G. Galli,et al.  A quantum fluid of metallic hydrogen suggested by first-principles calculations , 2004, Nature.

[23]  J. Tsuchiya,et al.  Phase transition in MgSiO 3 perovskite in the earth's lower mantle , 2004 .

[24]  Pengyu Y. Ren,et al.  Temperature and Pressure Dependence of the AMOEBA Water Model , 2004 .

[25]  Yi Ren,et al.  Ion Pair SN2 Reactions at Nitrogen: A High-Level G2M(+) Computational Study , 2004 .

[26]  T. Iitaka,et al.  The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle , 2004, Nature.

[27]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[28]  J. Tsuchiya,et al.  Elasticity of post‐perovskite MgSiO3 , 2004 .

[29]  A. Fortes Computational and experimental studies of solids in the ammonia-water system , 2004 .

[30]  H. Mao,et al.  In situ X-ray diffraction studies of iron to Earth-core conditions , 2004 .

[31]  M. Gillan,et al.  Gross thermodynamics of two-component core convection , 2004 .

[32]  T. Yoshino,et al.  Phase relations and equation-of-state of aluminous Mg-silicate perovskite and implications for Earth's lower mantle , 2004 .

[33]  Y. Ohishi,et al.  Post-Perovskite Phase Transition in MgSiO3 , 2004, Science.

[34]  R. Boehler,et al.  Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell , 2004 .

[35]  M. Gillan,et al.  Melting curve of materials: theory versus experiments , 2004 .

[36]  N. Ashcroft Bridgman’s high-pressure atomic destructibility and its growing legacy of ordered states , 2004 .

[37]  R. Q. Hood,et al.  Insulator to metal transition in fluid deuterium. , 2004, The Journal of chemical physics.

[38]  S. Sinogeikin,et al.  Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy , 2004 .

[39]  G. D. Price,et al.  Ab initio melting curve of copper by the phase coexistence approach. , 2004, The Journal of chemical physics.

[40]  N. Holmes,et al.  Melting of iron at the physical conditions of the Earth's core , 2004, Nature.

[41]  B. Romanowicz,et al.  Inferences on Flow at the Base of Earth's Mantle Based on Seismic Anisotropy , 2004, Science.

[42]  Stefano de Gironcoli,et al.  Thermoelastic properties of MgSiO(3)-perovskite: insights on the nature of the Earth's lower mantle. , 2004, Physical review letters.

[43]  J. Tsuchiya,et al.  Phase transition in MgSiO3 perovskite in the earth’s lower mantle , 2004 .

[44]  Y. Ohishi,et al.  Post-Perovskite Phase Transition , 2004 .

[45]  G. Masters,et al.  On the resolution of density within the Earth , 2003 .

[46]  M. Gillan,et al.  The properties of iron under core conditions from first principles calculations , 2003 .

[47]  M. Alfredsson,et al.  A high-resolution neutron powder diffraction study of ammonia dihydrate (ND3⋅2D2O) phase I , 2003 .

[48]  M. Gillan,et al.  Can the Earth's dynamo run on heat alone? , 2003 .

[49]  M. Finnis,et al.  Interatomic Forces in Condensed Matter , 2003 .

[50]  Giulia Galli,et al.  Melting of lithium hydride under pressure. , 2003, Physical review letters.

[51]  R. Ahuja,et al.  Stability of the body-centred-cubic phase of iron in the Earth's inner core , 2003, Nature.

[52]  Dario Alfe,et al.  First-principles simulations of direct coexistence of solid and liquid aluminum , 2003, cond-mat/0308226.

[53]  A. Fortes,et al.  Ab initio simulation of the ice II structure , 2003 .

[54]  Lidunka Vočadlo,et al.  Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth's core , 2003, Nature.

[55]  A. Oganov,et al.  All-electron and pseudopotential study of MgO: Equation of state, anharmonicity, and stability , 2003 .

[56]  V. Kahlenberg,et al.  Single Crystal X-ray Diffraction Study of CsHSi2O5 , 2003 .

[57]  C. Catlow,et al.  A theoretical study of the energetics and IR frequencies of hydroxyl defects in forsterite , 2003 .

[58]  Artem R. Oganov,et al.  Ab initio lattice dynamics and structural stability of MgO , 2003 .

[59]  University College London,et al.  The particle-in-cell model for ab initio thermodynamics: implications for the elastic anisotropy of the Earth's inner core , 2003, physics/0305033.

[60]  Sandro Scandolo,et al.  Liquid–liquid phase transition in compressed hydrogen from first-principles simulations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Mehl,et al.  TOPICAL REVIEW: The Slater Koster tight-binding method: a computationally efficient and accurate approach , 2003 .

[62]  A. Fortes,et al.  The structure, ordering and equation of state of ammonia dihydrate (nh3 · 2h2o) , 2003 .

[63]  T. Ebisuzaki,et al.  Substitution mechanism of Al ions in MgSiO3 perovskite under high pressure conditions from first-principles calculations , 2003 .

[64]  M. Gillan,et al.  Thermodynamics from first principles: temperature and composition of the Earth’s core , 2003, Mineralogical Magazine.

[65]  Zurich,et al.  Predicting crystal structures: the Parrinello-Rahman method revisited. , 2002, Physical review letters.

[66]  Astronomy,et al.  Exchange-correlation energy and the phase diagram of Si , 2002, cond-mat/0207531.

[67]  G. Kotliar,et al.  Linear response calculations of lattice dynamics in strongly correlated systems. , 2002, Physical review letters.

[68]  M. J. Mehl,et al.  The Slater–Koster tight-binding method: a computationally efficient and accurate approach , 2003 .

[69]  Rice,et al.  Thermodynamics from first principles : temperature and composition of the Earth s core , 2003 .

[70]  B. Karki,et al.  First‐principles lattice dynamics and thermoelasticity of MgSiO3 ilmenite at high pressure , 2002 .

[71]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  L. Stixrude,et al.  Elasticity of (Mg,Fe)SiO3‐perovskite at high pressures , 2002 .

[73]  Lidunka Vočadlo,et al.  Ab initio melting curve of the fcc phase of aluminum , 2002 .

[74]  L. Vočadlo,et al.  A new high-pressure phase of FeSi , 2002 .

[75]  G. Ackland,et al.  Ab initio quasiharmonic equations of state for dynamically stabilized soft-mode materials , 2002 .

[76]  Paul Loubeyre,et al.  Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen , 2002, Nature.

[77]  T. Ahrens,et al.  Phase diagram of iron, revised‐core temperatures , 2002 .

[78]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[79]  Frederick H. Streitz,et al.  Quantum-based atomistic simulation of materials properties in transition metals , 2002 .

[80]  M. Gillan,et al.  Composition and temperature of the Earth's core constrained by combining ab initio calculations and seismic data , 2002 .

[81]  G. Shen,et al.  Iron-Silicon Alloy in Earth's Core? , 2002, Science.

[82]  M. Gillan,et al.  Complementary approaches to the ab initio calculation of melting properties , 2001, cond-mat/0111510.

[83]  M. Gillan,et al.  Ab initio chemical potentials of solid and liquid solutions and the chemistry of the Earth's core , 2001, cond-mat/0111431.

[84]  M. Gillan,et al.  Iron under Earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations , 2001, cond-mat/0107307.

[85]  A. Oganov Computer simulation studies of minerals , 2002 .

[86]  G. D. Price,et al.  Ab initio theory of phase transitions and thermoelasticity of minerals , 2002 .

[87]  M. Desjarlais,et al.  Equation of state measurements of liquid deuterium to 100 GPa. , 2001 .

[88]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[89]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[90]  R. Cohen,et al.  Importance of Magnetism in Phase Stability, Equations of State, and Elasticity , 2001, cond-mat/0110025.

[91]  R. Cohen,et al.  Elasticity of iron at the temperature of the Earth's inner core , 2001, Nature.

[92]  D. Alfé,et al.  The Ab Initio Melting Curve of Aluminium , 2001, cond-mat/0108460.

[93]  G. D. Price,et al.  The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle , 2001, Nature.

[94]  M. Gillan,et al.  Phonon Density of States of Iron up to 153 Gigapascals , 2001, Science.

[95]  Wolfgang Windl,et al.  Dynamical and optical properties of warm dense hydrogen , 2001 .

[96]  R. Ditz,et al.  Systematics of transition-metal melting , 2001 .

[97]  R. Hide Introduction to the Physics of the Earth's Interior , 2001 .

[98]  G. D. Price,et al.  Ab initio elasticity and thermal equation of state of MgSiO3 perovskite , 2001 .

[99]  S. Shandera,et al.  Physical properties of ammonia‐rich ice: Application to Titan , 2001 .

[100]  H. Mao,et al.  Quasi‐hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure‐volume‐temperature equation of state , 2001 .

[101]  W. Nellis,et al.  Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar) , 2001 .

[102]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[103]  Illan,et al.  The virtual matter laboratory , 2001 .

[104]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[105]  P. Sánchez‐Friera,et al.  Efficient total energy calculations from self-energy models. , 2000, Physical review letters.

[106]  Stefano de Gironcoli,et al.  Ab initio lattice dynamics of MgSiO3 perovskite at high pressure , 2000 .

[107]  J. Brodholt Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth's mantle , 2000, Nature.

[108]  K. Refson,et al.  An ab initio study of hydrogen in forsterite and a possible mechanism for hydrolytic weakening , 2000 .

[109]  James A. Snyder,et al.  LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO , 2000 .

[110]  Geoffrey D. Price,et al.  First principles calculations on the diffusivity and viscosity of liquid Fe–S at experimentally accessible conditions , 2000 .

[111]  M. J. Gillan,et al.  Constraints on the composition of the Earth's core from ab initio calculations , 2000, Nature.

[112]  T. Miyake,et al.  Quantum distribution of protons in solid molecular hydrogen at megabar pressures , 2000, Nature.

[113]  Francois Gygi,et al.  Ab initio simulations of compressed liquid deuterium , 2000 .

[114]  D. Alfé,et al.  Thermodynamic Stability of Fe/O Solid Solution at Inner‐Core Conditions , 2000, cond-mat/0002208.

[115]  G. Chiarotti,et al.  Physics of iron at Earth's core conditions , 2000, Science.

[116]  D. Andrault,et al.  Structure analysis and stability field of β-iron at high P and T , 2000 .

[117]  L. Dubrovinsky,et al.  Iron phases at high pressures and temperatures: Phase transition and melting , 2000 .

[118]  Börje Johansson,et al.  Quasi-Ab initio molecular dynamic study of Fe melting , 2000, Physical review letters.

[119]  London,et al.  Structure and dynamics of liquid iron under Earth’s core conditions , 1999, cond-mat/9905319.

[120]  M. Kunz,et al.  Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions , 2000 .

[121]  Stefano de Gironcoli,et al.  High-pressure lattice dynamics and thermoelasticity of MgO , 2000 .

[122]  J. Kress,et al.  Density-functional calculation of the Hugoniot of shocked liquid deuterium , 2000 .

[123]  M. Gillan,et al.  Ab initio free energy calculations on the polymorphs of iron at core conditions , 2000 .

[124]  Stefano de Gironcoli,et al.  First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions , 1999, Science.

[125]  R. Jeanloz,et al.  Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? , 1999, Science.

[126]  M. Gillan,et al.  The melting curve of iron at the pressures of the Earth's core from ab initio calculations , 1999, Nature.

[127]  Stefano de Gironcoli,et al.  DIPOLE-QUADRUPOLE INTERACTIONS AND THE NATURE OF PHASE III OF COMPRESSED HYDROGEN , 1999, cond-mat/9909383.

[128]  M. Gillan,et al.  Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions , 1999, cond-mat/9908400.

[129]  M. Gillan,et al.  Transport coefficients of liquids from first principles , 1999 .

[130]  Vocadlo,et al.  Crystal structure, compressibility and possible phase transitions in \boldvarepsilon-FeSi studied by first-principles pseudopotential calculations. , 1999, Acta crystallographica. Section B, Structural science.

[131]  M. Gillan,et al.  The structure of iron under the conditions of the Earth's inner core , 1999 .

[132]  Weidner,et al.  Thermal equation of state of aluminum-enriched silicate perovskite , 1999, Science.

[133]  R. Cohen,et al.  First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure (vol 60, pg 791, 1999) , 1999, cond-mat/9904431.

[134]  D. Alfé Ab initio molecular dynamics, a simple algorithm for charge extrapolation , 1999 .

[135]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[136]  London,et al.  Oxygen in the Earth's core: a first-principles study , 1998, physics/9809036.

[137]  Gillan,et al.  Melting curve of iron at Earth's core pressures from ab initio calculations , 1999 .

[138]  M. Parrinello,et al.  Superionic and metallic states of water and ammonia at giant planet conditions. , 1999, Science.

[139]  H. Mao,et al.  New windows on the earth's deep interior , 1998 .

[140]  D. Stevenson States of matter in massive planets , 1998 .

[141]  Weber,et al.  Measurements of the equation of state of deuterium at the fluid insulator-metal transition , 1998, Science.

[142]  M. Parrinello,et al.  Ab Initio Infrared Absorption Study of the Hydrogen-Bond Symmetrization in Ice , 1998 .

[143]  J. Banfield,et al.  Distribution of cations and vacancies and the structure of defects in oxidized intermediate olivine by atomic-resolution TEM and image simulation , 1998 .

[144]  Boehler,et al.  Solidus of Earth's deep mantle , 1998, Science.

[145]  A. Ruoff,et al.  Solid hydrogen at 342 GPa: no evidence for an alkali metal , 1998, Nature.

[146]  Michael J. Gillan,et al.  First-principles calculation of transport coefficients , 1998 .

[147]  UK.,et al.  First-principles simulations of liquid Fe-S under Earth's core conditions , 1998, cond-mat/9804035.

[148]  M. Gillan,et al.  First-order phase transitions by first-principles free-energy calculations: the melting of Al , 1998 .

[149]  M. Gillan,et al.  The viscosity of liquid iron at the physical conditions of the Earth's core , 1998, Nature.

[150]  H. Kitamura,et al.  Metal-Insulator Transitions in Dense Hydrogen: Equations of State, Phase Diagrams and Interpretation of Shock-Compression Experiments , 1998 .

[151]  Georg Kresse,et al.  High Pressure Polymorphism in Silica , 1998 .

[152]  M. Parrinello,et al.  Tunnelling and zero-point motion in high-pressure ice , 1998, Nature.

[153]  H. Mao,et al.  Melting and crystal structure of iron at high pressures and temperatures , 1998 .

[154]  David R. Bowler,et al.  Tight-binding modelling of materials , 1997 .

[155]  J. Brodholt Ab initio calculations on point defects in forsterite (Mg2SiO4) and implications for diffusion and creep , 1997 .

[156]  R. Cohen,et al.  Composition and temperature of Earth's inner core , 1997 .

[157]  M. Kunz,et al.  The Orthorhombic Structure of Iron: An in Situ Study at High-Temperature and High-Pressure , 1997 .

[158]  Lars Stixrude,et al.  Tight-binding computations of elastic anisotropy of Fe, Xe, and Si under compression (vol 56, pg 8575, 1997) , 1997 .

[159]  Xiaodong Song,et al.  Anisotropy of the Earth's inner core , 1997 .

[160]  J. Crain,et al.  Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures , 1997 .

[161]  H. Mao,et al.  Cascading Fermi Resonances and the Soft Mode in Dense Ice , 1997 .

[162]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[163]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[164]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[165]  E. Tosatti,et al.  SOLID MOLECULAR HYDROGEN : THE BROKEN SYMMETRY PHASE , 1997, cond-mat/9703074.

[166]  M. Gillan The virtual matter laboratory , 1997 .

[167]  E Tosatti,et al.  Dissociation of Methane into Hydrocarbons at Extreme (Planetary) Pressure and Temperature , 1997, Science.

[168]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[169]  Graeme Ackland,et al.  Structure and elasticity of MgO at high pressure , 1997 .

[170]  J. Crain,et al.  Ab initio studies of high-pressure structural transformations in silica , 1997 .

[171]  Nellis,et al.  Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). , 1997, Physical review letters.

[172]  Aoki,et al.  Infrared absorption study of the hydrogen-bond symmetrization in ice to 110 GPa. , 1996, Physical review. B, Condensed matter.

[173]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[174]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[175]  H. Mao,et al.  X-ray diffraction and equation of state of hydrogen at megabar pressures , 1996, Nature.

[176]  S. Saxena,et al.  X-ray evidence for the new phase β-iron at high temperature and high pressure , 1996 .

[177]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[178]  H. Mao,et al.  Compression of Ice to 210 Gigapascals: Infrared Evidence for a Symmetric Hydrogen-Bonded Phase , 1996, Science.

[179]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[180]  Wills,et al.  First-principles theory of iron up to earth-core pressures: Structural, vibrational, and elastic properties. , 1996, Physical review. B, Condensed matter.

[181]  Parrinello,et al.  New high-pressure phase of ice. , 1996, Physical review letters.

[182]  Cohen,et al.  Thermal properties of iron at high pressures and temperatures. , 1996, Physical review. B, Condensed matter.

[183]  W. J. Nellis,et al.  Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar) , 1996 .

[184]  G. D. Price,et al.  The melting of MgO — computer calculations via molecular dynamics , 1996 .

[185]  D. L. Anderson Equations of State of Solids for Geophysics and Ceramic Science [Book Review] , 1996 .

[186]  Georg Kresse,et al.  Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .

[187]  Ross,et al.  Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen. , 1995, Physical review. B, Condensed matter.

[188]  V. Heine,et al.  The solubility of [4H]Si defects in α-quartz and their role in the formation of molecular water and related weakening on heating , 1995 .

[189]  W. Nellis,et al.  Temperature measurements of shock-compressed liquid hydrogen: implications for the interior of Jupiter , 1995, Science.

[190]  Albrecht W. Hofmann,et al.  The chemical composition of the Earth , 1995 .

[191]  Geoffrey D. Price,et al.  Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures , 1995 .

[192]  G. D. Price,et al.  FeMg interdiffusion in olivine up to 9 GPa at T = 600-900°C; experimental data and comparison with defect calculations , 1995 .

[193]  Ando,et al.  Observation of nuclear resonant scattering accompanied by phonon excitation using synchrotron radiation. , 1995, Physical review letters.

[194]  Alp,et al.  Phonon density of states measured by inelastic nuclear resonant scattering. , 1995, Physical review letters.

[195]  S. C. Parker,et al.  Absolute Ionic Diffusion in MgO - Computer Calculations via Lattice Dynamics , 1995 .

[196]  R. Cohen,et al.  High-Pressure Elasticity of Iron and Anisotropy of Earth's Inner Core , 1995, Science.

[197]  Hohl,et al.  Miscibility of hydrogen and helium under astrophysical conditions. , 1995, Physical review letters.

[198]  Car,et al.  Ab initio molecular dynamics study of first-order phase transitions: melting of silicon. , 1995, Physical review letters.

[199]  W. McDonough,et al.  The composition of the Earth , 1995 .

[200]  H. Mao,et al.  Transformation of stishovite to a denser phase at lower-mantle pressures , 1995, Nature.

[201]  Duffy,et al.  Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa. , 1995, Physical review letters.

[202]  R. Cohen,et al.  Constraints on the crystalline structure of the inner core: Mechanical instability of BCC iron at high pressure , 1995 .

[203]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[204]  A. Yeganeh-Haeri Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite , 1994 .

[205]  Cohen,et al.  Tight-binding total-energy method for transition and noble metals. , 1994, Physical review. B, Condensed matter.

[206]  Gong,et al.  Melting and melt structure of MgO at high pressures. , 1994, Physical review. B, Condensed matter.

[207]  A. Zerr,et al.  Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesioüstite , 1994, Nature.

[208]  R. Dovesi,et al.  A quantum-mechanical study of the relative stability under pressure of MgSiO3-ilmenite, MgSiO3-perovskite, and MgO-periclase+SiO2-stishovite assemblage , 1994 .

[209]  Cohen,et al.  Iron at high pressure: Linearized-augmented-plane-wave computations in the generalized-gradient approximation. , 1994, Physical review. B, Condensed matter.

[210]  R. Cohen,et al.  Prediction of a high-pressure phase transition in Al2O3 , 1994 .

[211]  Moriarty Angular forces and melting in bcc transition metals: A case study of molybdenum. , 1994, Physical review. B, Condensed matter.

[212]  Wang,et al.  Melting line of aluminum from simulations of coexisting phases. , 1994, Physical review. B, Condensed matter.

[213]  J. B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[214]  Xiaodong Song,et al.  anisotropy of Earth's inner core , 1993 .

[215]  R. Orlando,et al.  A quantum mechanical study of the perovskite structure type of MgSiO3 , 1993 .

[216]  Jeroen Tromp,et al.  Support for anisotropy of the Earth's inner core from free oscillations , 1993, Nature.

[217]  R. Cohen,et al.  Stability of orthorhombic MgSiO3 perovskite in the Earth's lower mantle , 1993, Nature.

[218]  Ross,et al.  Shock temperatures and melting of iron at Earth core conditions. , 1993, Physical review letters.

[219]  Price,et al.  Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. , 1993, Physical review letters.

[220]  R. Boehler Temperatures in the Earth's core from melting-point measurements of iron at high static pressures , 1993, Nature.

[221]  B. Wood Carbon in the core , 1993 .

[222]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[223]  Lin,et al.  Defect energetics in MgO treated by first-principles methods. , 1992, Physical review. B, Condensed matter.

[224]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[225]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[226]  D. Saumon,et al.  The Molecular-Metallic Transition of Hydrogen and the Structure of Jupiter and Saturn , 1992 .

[227]  G. Rossman,et al.  Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals , 1992, Science.

[228]  W. Hubbard,et al.  Interior Structure of Neptune: Comparison with Uranus , 1991, Science.

[229]  J. Poirier Introduction to the Physics of the Earth's Interior: Melting , 1991 .

[230]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[231]  P. Shearer,et al.  Summary of seismological constraints on the structure of the Earth's core , 1990 .

[232]  Moriarty Analytic representation of multi-ion interatomic potentials in transition metals. , 1990, Physical review. B, Condensed matter.

[233]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[234]  D. L. Anderson Theory of Earth , 2014 .

[235]  X. Gonze,et al.  Density-functional approach to nonlinear-response coefficients of solids. , 1989, Physical review. B, Condensed matter.

[236]  T. Katsura,et al.  A temperature profile of the mantle transition zone , 1989 .

[237]  R. Hazen,et al.  Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K , 1989 .

[238]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[239]  M. Mehl,et al.  Linearized augmented plane wave electronic structure calculations for MgO and CaO , 1988 .

[240]  Klein,et al.  New high-pressure phases of ice. , 1988, Physical review letters.

[241]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[242]  Y Ohta,et al.  The tight-binding bond model , 1988 .

[243]  Jean-Paul Poirier,et al.  Transport properties of liquid metals and viscosity of the Earth's core , 1988 .

[244]  S. C. Parker,et al.  The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs , 1987 .

[245]  Ronald E. Cohen,et al.  Elasticity and equation of state of MgSiO3 perovskite , 1987 .

[246]  Broughton,et al.  Phase diagram of silicon by molecular dynamics. , 1987, Physical review. B, Condensed matter.

[247]  Jacobsen,et al.  Interatomic interactions in the effective-medium theory. , 1987, Physical review. B, Condensed matter.

[248]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[249]  R. Jeanloz,et al.  The Melting Curve of Iron to 250 Gigapascals: A Constraint on the Temperature at Earth's Center , 1987, Science.

[250]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[251]  S. Hart,et al.  In search of a bulk-Earth composition , 1986 .

[252]  V. Heine,et al.  Theory of the atomic interactions in (s,p)-bonded metals , 1986 .

[253]  Y. Gupta,et al.  Shock Waves in Condensed Matter , 1986 .

[254]  R. Mcqueen,et al.  Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa , 1986 .

[255]  P. Dobson,et al.  Physical Properties of Crystals – Their Representation by Tensors and Matrices , 1985 .

[256]  Graham,et al.  Spontaneous Raman scattering from shocked water. , 1985, Physical review letters.

[257]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[258]  Martin,et al.  Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs. , 1985, Physical review. B, Condensed matter.

[259]  Martin,et al.  Quantum-mechanical theory of stress and force. , 1985, Physical review. B, Condensed matter.

[260]  Wang,et al.  Theory of magnetic and structural ordering in iron. , 1985, Physical review letters.

[261]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[262]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[263]  J. Robertson Shock waves in condensed matter edited by J. R. Asay, R. A. Graham and G. K. Straub , 1984 .

[264]  Kee-Joo Chang,et al.  HIGH-PRESSURE BEHAVIOR OF MGO - STRUCTURAL AND ELECTRONIC-PROPERTIES , 1984 .

[265]  D. Young,et al.  Theoretical study of the aluminum melting curve to very high pressure , 1984 .

[266]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[267]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[268]  D. Heyes,et al.  MOLECULAR DYNAMICS AT CONSTANT PRESSURE AND TEMPERATURE , 1983 .

[269]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[270]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[271]  M. Ross The ice layer in Uranus and Neptune—diamonds in the sky? , 1981, Nature.

[272]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[273]  M. Ross,et al.  Repulsive forces of simple molecules and mixtures at high density and temperature , 1980 .

[274]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[275]  J. Verhoogen Energetics of the Earth , 1980 .

[276]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[277]  Walter A. Harrison,et al.  Electronic structure and the properties of solids , 1980 .

[278]  J. G. Powles,et al.  The properties of liquid nitrogen , 1976 .

[279]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[280]  D. W. Noid Studies in Molecular Dynamics , 1976 .

[281]  C. Catlow,et al.  Shell model calculations of the energies of formation of point defects in alkaline earth fluorides , 1973 .

[282]  Kenneth T. Gillen,et al.  Self‐Diffusion in Liquid Water to −31°C , 1972 .

[283]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[284]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[285]  L. V. Woodcock,et al.  Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. Part 1.—Potassium chloride , 1971 .

[286]  Volker Heine,et al.  The Fitting of Pseudopotentials to Experimental Data and Their Subsequent Application , 1970 .

[287]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[288]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[289]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[290]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[291]  M. Klein,et al.  Second-order elastic constants of a solid under stress , 1965 .

[292]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[293]  G. Vineyard,et al.  THE DYNAMICS OF RADIATION DAMAGE , 1960 .

[294]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[295]  D A Greenwood,et al.  The Boltzmann Equation in the Theory of Electrical Conduction in Metals , 1958 .

[296]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[297]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[298]  B. Alder,et al.  Radial Distribution Function Calculated by the Monte‐Carlo Method for a Hard Sphere Fluid , 1955 .

[299]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[300]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[301]  R. Feynman Forces in Molecules , 1939 .

[302]  E. Wigner,et al.  On the Possibility of a Metallic Modification of Hydrogen , 1935 .

[303]  H. S. Washington The chemical composition of the earth , 1925 .

[304]  W. Rühm,et al.  Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth ’ s core , 2022 .