Martingale Representation of Functionals of Lévy Processes

Abstract The main focus of the paper is a Clark–Ocone–Haussman formula for Lévy processes. First a difference operator is defined via the Fock space representation of L 2(P), then from this definition a Clark–Ocone–Haussman type formula is derived. We also derive some explicit chaos expansions for some common functionals. Later we prove that the difference operator defined via the Fock space representation and the difference operator defined by Picard [Picard, J. Formules de dualitésur l'espace de Poisson. Ann. Inst. Henri Poincaré 1996, 32 (4), 509–548] are equal. Finally, we give an example of how the Clark–Ocone–Haussman formula can be used to solve a hedging problem in a financial market modelled by a Lévy process.

[1]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  B. Øksendal AN INTRODUCTION TO MALLIAVIN CALCULUS WITH APPLICATIONS TO ECONOMICS , 1996 .

[3]  Kiyosi Itô,et al.  SPECTRAL TYPE OF THE SHIFT TRANSFORMATION OF DIFFERENTIAL PROCESSES WITH STATIONARY INCREMENTS( , 1956 .

[4]  Jorge A. León,et al.  On Lévy processes, Malliavin calculus and market models with jumps , 2002, Finance Stochastics.

[5]  Jean Picard,et al.  On the existence of smooth densities for jump processes , 1996 .

[6]  Nicolas Privault Chaotic and variational calculus in discrete and continuous time for the poisson process , 1994 .

[7]  Anticipative Markovian transformations on the Poisson space , 2001 .

[8]  Bernt Øksendal,et al.  White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance , 2000, Finance Stochastics.

[9]  D. Nualart,et al.  Anticipative calculus for the Poisson process based on the Fock space , 1990 .

[10]  Peter Kuster,et al.  Malliavin calculus for processes with jumps , 1991 .

[11]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[12]  D. Nualart,et al.  Chaotic and predictable representation for L'evy Processes , 2000 .

[13]  J. Picard Formules de dualité sur l'espace de Poisson , 1996 .

[14]  Tina Hviid Rydberg The normal inverse gaussian lévy process: simulation and approximation , 1997 .

[15]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[16]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[17]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[18]  H. Föllmer,et al.  Hedging of contingent claims under incomplete in-formation , 1991 .

[19]  M. Schweizer Option hedging for semimartingales , 1991 .

[20]  P. Protter Stochastic integration and differential equations , 1990 .