The Protective Function of Directed Asymmetry in the Pericellular Matrix Enveloping Chondrocytes

[1]  I. Kosztin,et al.  Towards a Quantitative Understanding of Protein–Lipid Bilayer Interactions at the Single Molecule Level: Opportunities and Challenges , 2020, The Journal of Membrane Biology.

[2]  R. Mauck,et al.  Early Changes in Cartilage Pericellular Matrix Micromechanobiology Portend the Onset of Post-Traumatic Osteoarthritis. , 2020, Acta biomaterialia.

[3]  S. Grässel,et al.  Recent advances in the treatment of osteoarthritis , 2020, F1000Research.

[4]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[5]  F. Guilak,et al.  Cell migration: implications for repair and regeneration in joint disease , 2019, Nature Reviews Rheumatology.

[6]  F. Guilak,et al.  Osteoarthritis as a disease of the cartilage pericellular matrix. , 2018, Matrix biology : journal of the International Society for Matrix Biology.

[7]  J. Weiss,et al.  Finite Element Formulation of Multiphasic Shell Elements for Cell Mechanics Analyses in FEBio. , 2018, Journal of biomechanical engineering.

[8]  Walter Herzog,et al.  Site-specific glycosaminoglycan content is better maintained in the pericellular matrix than the extracellular matrix in early post-traumatic osteoarthritis , 2018, PloS one.

[9]  Walter Herzog,et al.  Three-dimensional micro-scale strain mapping in living biological soft tissues. , 2018, Acta biomaterialia.

[10]  W. Herzog,et al.  Unfolding of membrane ruffles of in situ chondrocytes under compressive loads , 2017, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[11]  A. Engler,et al.  The cytoskeleton regulates cell attachment strength. , 2015, Biophysical journal.

[12]  F. Guilak,et al.  The structure and function of the pericellular matrix of articular cartilage. , 2014, Matrix biology : journal of the International Society for Matrix Biology.

[13]  D. Elliott,et al.  DTAF Dye Concentrations Commonly Used to Measure Microscale Deformations in Biological Tissues Alter Tissue Mechanics , 2014, PloS one.

[14]  Luis Ibáñez,et al.  The Design of SimpleITK , 2013, Front. Neuroinform..

[15]  N. A. Abu Osman,et al.  The properties of chondrocyte membrane reservoirs and their role in impact-induced cell death. , 2013, Biophysical journal.

[16]  Noor Azuan Abu Osman,et al.  Dual photon excitation microscopy and image threshold segmentation in live cell imaging during compression testing. , 2013, Journal of biomechanics.

[17]  F. Guilak,et al.  Mechanical regulation of chondrogenesis , 2013, Stem Cell Research & Therapy.

[18]  F. Guilak,et al.  Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage , 2012, Journal of The Royal Society Interface.

[19]  F. Guilak,et al.  A biomechanical role for perlecan in the pericellular matrix of articular cartilage. , 2012, Matrix biology : journal of the International Society for Matrix Biology.

[20]  W. Herzog,et al.  Mechanical behaviour of in-situ chondrocytes subjected to different loading rates: a finite element study , 2012, Biomechanics and Modeling in Mechanobiology.

[21]  Walter Herzog,et al.  A depth-dependent model of the pericellular microenvironment of chondrocytes in articular cartilage , 2011, Computer methods in biomechanics and biomedical engineering.

[22]  Christine Y. Chuang,et al.  Heparan sulfate-dependent signaling of fibroblast growth factor 18 by chondrocyte-derived perlecan. , 2010, Biochemistry.

[23]  F. Guilak,et al.  Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. , 2010, Biophysical journal.

[24]  D. Felson Identifying different osteoarthritis phenotypes through epidemiology. , 2010, Osteoarthritis and cartilage.

[25]  G. Ateshian,et al.  Influence of the partitioning of osmolytes by the cytoplasm on the passive response of cells to osmotic loading. , 2009, Biophysical journal.

[26]  M. Farach-Carson,et al.  Multifunctionality of extracellular and cell surface heparan sulfate proteoglycans , 2009, Cellular and Molecular Life Sciences.

[27]  G. Ateshian,et al.  Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. , 2009, Journal of biomechanical engineering.

[28]  A. Grodzinsky,et al.  Structure of pericellular matrix around agarose-embedded chondrocytes. , 2007, Osteoarthritis and cartilage.

[29]  D. Ornitz,et al.  Heparan and chondroitin sulfate on growth plate perlecan mediate binding and delivery of FGF-2 to FGF receptors. , 2007, Matrix biology : journal of the International Society for Matrix Biology.

[30]  M. Sheetz,et al.  Local force and geometry sensing regulate cell functions , 2006, Nature Reviews Molecular Cell Biology.

[31]  Maarten Merkx,et al.  Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. , 2006, Analytical biochemistry.

[32]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[33]  Gerard A Ateshian,et al.  Optical determination of anisotropic material properties of bovine articular cartilage in compression. , 2003, Journal of biomechanics.

[34]  T. Aigner,et al.  Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage. , 2002, Osteoarthritis and cartilage.

[35]  B. Jena,et al.  Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Ross T. Whitaker,et al.  Variable-conductance, level-set curvature for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[37]  V. Mow,et al.  The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. , 2000, Journal of biomechanics.

[38]  J. Alex Stark,et al.  Adaptive image contrast enhancement using generalizations of histogram equalization , 2000, IEEE Trans. Image Process..

[39]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[40]  H. P. Ting-Beall,et al.  The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. , 1999, Biophysical journal.

[41]  V. Mow,et al.  Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. , 1998, The Journal of orthopaedic and sports physical therapy.

[42]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[43]  Albert C. Chen,et al.  Depth‐dependent confined compression modulus of full‐thickness bovine articular cartilage , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[44]  S. Ledbetter,et al.  Perlecan is a component of cartilage matrix and promotes chondrocyte attachment. , 1995, Journal of cell science.

[45]  A. Yayon,et al.  Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis , 1994, Cell.

[46]  R. Timpl,et al.  Recombinant expression and structural and binding properties of α1(VI) and α2(VI) chains of human collagen type VI , 1994 .

[47]  S. Ayad,et al.  Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. , 1988, Journal of cell science.

[48]  V. Mow,et al.  Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. , 1980, Journal of biomechanical engineering.

[49]  P. Bullough,et al.  Permeability of articular cartilage. , 1968, Nature.

[50]  P. Torzilli,et al.  Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression. , 2016, Acta biomaterialia.

[51]  Benjamin J. Ellis,et al.  FEBio: finite elements for biomechanics. , 2012, Journal of biomechanical engineering.

[52]  F. Guilak,et al.  DEVELOPMENTAL AND OSTEOARTHRITIC CHANGES IN Col6a1 KNOCKOUT MICE: THE BIOMECHANICS OF COLLAGEN VI IN THE CARTILAGE PERICELLULAR MATRIX , 2011 .

[53]  F. Guilak,et al.  The sixth sense of the musculoskeletal system , 2010 .

[54]  Farshid Guilak,et al.  Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. , 2007, Journal of biomechanics.

[55]  G A Ateshian,et al.  A Theoretical Analysis of Water Transport Through Chondrocytes , 2007, Biomechanics and modeling in mechanobiology.

[56]  Richard Neutze,et al.  Aquaporin gating. , 2006, Current opinion in structural biology.

[57]  R. Loeser,et al.  CD44 and integrin matrix receptors participate in cartilage homeostasis , 2002, Cellular and Molecular Life Sciences CMLS.

[58]  C. A. Poole,et al.  Chondrons from articular cartilage. III. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage. , 1991, Arthritis and rheumatism.

[59]  V C Mow,et al.  The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. , 1990, Journal of biomechanics.

[60]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[61]  V C Mow,et al.  On the fundamental fluid transport mechanisms through normal and pathological articular cartilage during function--I. The formulation. , 1976, Journal of biomechanics.