Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season

[1] We use sensitivity analysis to identify the parameters that are most responsible for controlling land surface model (LSM) simulations and to understand complex parameter interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the U.S. Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol′'s total and first-order sensitivity indexes, we show that few parameters directly control the variance of the model response. Significant parameter interaction occurs. Optimal parameter values differ between models, and the relationships between parameters also change. GW decreases unwarranted parameter interaction and appears to improve model realism, especially at wetter study sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. At a wet site, GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and base flow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. Our results suggest that the a priori assignment of parameters should also consider the climatic conditions of a study location.

[1]  Mariana Vertenstein,et al.  An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated urban heat island in offline simulations , 2008 .

[2]  Xu Liang,et al.  Intercomparison of land-surface parameterization schemes: sensitivity of surface energy and water fluxes to model parameters , 2003 .

[3]  K. Oleson,et al.  Use of FLUXNET in the Community Land Model development , 2008 .

[4]  Zong-Liang Yang,et al.  Evaluating Enhanced Hydrological Representations in Noah LSM over Transition Zones: Implications for Model Development , 2009 .

[5]  Thorsten Wagener,et al.  Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox , 2007, Environ. Model. Softw..

[6]  Rolph E. Anderson,et al.  Multivariate data analysis (4th ed.): with readings , 1995 .

[7]  Lucien Wald,et al.  Using remotely sensed solar radiation data for reference evapotranspiration estimation at a daily time step , 2008 .

[8]  Soroosh Sorooshian,et al.  Evaluating model performance and parameter behavior for varying levels of land surface model complexity , 2006 .

[9]  R L Angel Martinez and Wendy,et al.  Computational Statistics Handbook With Matlab 2nd Edition , 2008 .

[10]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[11]  Andrew J. Pitman,et al.  Assessing the Sensitivity of a Land-Surface Scheme to the Parameter Values Using a Single Column Model , 1994 .

[12]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[13]  G. Niu,et al.  The Versatile Integrator of Surface and Atmosphere processes: Part 1. Model description , 2003 .

[14]  Peter C. Young,et al.  Uncertainty , sensitivity analysis and the role of data based mechanistic modeling in hydrology , 2006 .

[15]  K. Beven,et al.  Model Calibration and Uncertainty Estimation , 2006 .

[16]  D. Randall,et al.  Climate models and their evaluation , 2007 .

[17]  Soroosh Sorooshian,et al.  Evaluation and Transferability of the Noah Land Surface Model in Semiarid Environments , 2005 .

[18]  Yuqiong Liu,et al.  Reconciling theory with observations: elements of a diagnostic approach to model evaluation , 2008 .

[19]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[20]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model , 1986 .

[21]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[22]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[23]  Stefano Tarantola,et al.  Sensitivity analysis practices: Strategies for model-based inference , 2006, Reliab. Eng. Syst. Saf..

[24]  Kevin W. Manning,et al.  Sensitivity of the PBL and Precipitation in 12-Day Simulations of Warm-Season Convection Using Different Land Surface Models and Soil Wetness Conditions , 2008 .

[25]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[26]  R. Reedy,et al.  Impact of land use and land cover change on groundwater recharge and quality in the southwestern US , 2005 .

[27]  Rolph E. Anderson,et al.  Multivariate Data Analysis with Readings , 1979 .

[28]  Soroosh Sorooshian,et al.  A framework for development and application of hydrological models , 2001, Hydrology and Earth System Sciences.

[29]  Soroosh Sorooshian,et al.  Parameter sensitivity analysis for different complexity land surface models using multicriteria methods , 2006 .

[30]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[31]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[32]  L. Bastidas,et al.  EVALUATION OF PARAMETER TRANSFERABILITY FOR LAND-SURFACE MODELS ACROSS SEMI-ARID ENVIRONMENTS , 2006 .

[33]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[34]  Zong-Liang Yang,et al.  Improving land‐surface model hydrology: Is an explicit aquifer model better than a deeper soil profile? , 2007 .

[35]  A. Pitman,et al.  Evaluating the Performance of Land Surface Models , 2008 .

[36]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[37]  P. Reed,et al.  Hydrology and Earth System Sciences Discussions Comparing Sensitivity Analysis Methods to Advance Lumped Watershed Model Identification and Evaluation , 2022 .

[38]  G. Niu,et al.  Sensitivity of biogenic emissions simulated by a land-surface model to land-cover representations , 2008 .

[39]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation , 2001 .

[40]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[41]  Paul R. Houser,et al.  Surface flux measurement and modeling at a semi-arid Sonoran Desert site , 1996 .

[42]  G. Hornberger,et al.  Approach to the preliminary analysis of environmental systems , 1981 .

[43]  Soroosh Sorooshian,et al.  Sensitivity analysis of the biosphere‐atmosphere transfer scheme , 1996 .

[44]  Hoshin Vijai Gupta,et al.  Model identification for hydrological forecasting under uncertainty , 2005 .

[45]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[46]  Saltelli Andrea,et al.  Sensitivity Analysis for Nonlinear Mathematical Models. Numerical ExperienceSensitivity Analysis for Nonlinear Mathematical Models. Numerical Experience , 1995 .

[47]  P. Reed,et al.  Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models , 2009 .

[48]  J. D. Tarpley,et al.  Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project , 2003 .

[49]  T. Meyers,et al.  Sensitivity of Land Surface Simulations to Model Physics, Land Characteristics, and Forcings, at Four CEOP Sites , 2007 .

[50]  Hoshin V. Gupta,et al.  Exploring the relationship between complexity and performance in a land surface model using the multicriteria method , 2002 .

[51]  Zong-Liang Yang,et al.  Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data , 2007 .

[52]  P. Blanken,et al.  NCAR/CU Surface, Soil, and Vegetation Observations during the International H2O Project 2002 Field Campaign , 2007 .

[53]  Nong Shang,et al.  Parameter uncertainty and interaction in complex environmental models , 1994 .

[54]  G. Niu,et al.  Model performance, model robustness, and model fitness scores: A new method for identifying good land‐surface models , 2008 .

[55]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[56]  Zong-Liang Yang,et al.  A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models , 2005 .

[57]  A. Saltelli,et al.  Sensitivity analysis: Could better methods be used? , 1999 .

[58]  M. S. Moran,et al.  Role of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semiarid environment , 2008 .

[59]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[60]  P. Reed,et al.  Characterization of watershed model behavior across a hydroclimatic gradient , 2008 .

[61]  Aaron A. Berg,et al.  Evaluation of 10 Methods for Initializing a Land Surface Model , 2005 .

[62]  Patrick M. Reed,et al.  Advancing the identification and evaluation of distributed rainfall‐runoff models using global sensitivity analysis , 2007 .

[63]  H. Gupta,et al.  Understanding uncertainty in distributed flash flood forecasting for semiarid regions , 2008 .

[64]  Steven E. Koch,et al.  An Overview of the International H2O Project (IHOP_2002) and Some Preliminary Highlights , 2004 .

[65]  Ann Henderson-Sellers,et al.  A Factorial Assessment of the Sensitivity of the BATS Land-Surface Parameterization Scheme , 1993 .

[66]  A. Pitman The evolution of, and revolution in, land surface schemes designed for climate models , 2003 .

[67]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[68]  Soroosh Sorooshian,et al.  Sensitivity analysis of a land surface scheme using multicriteria methods , 1999 .

[69]  K. Davis,et al.  Sensitivity, uncertainty and time dependence of parameters in a complex land surface model , 2008 .

[70]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[71]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[72]  Anthony J. Jakeman,et al.  Ten iterative steps in development and evaluation of environmental models , 2006, Environ. Model. Softw..

[73]  Lisa J. Graumlich,et al.  Interactive Canopies for a Climate Model , 1998 .

[74]  Bart Nijssen,et al.  Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model , 2007 .

[75]  Eric E. Small,et al.  A comparison of land surface model soil hydraulic properties estimated by inverse modeling and pedotransfer functions , 2007 .