Control of robot arm based on speech recognition using Mel-Frequency Cepstrum Coefficients (MFCC) and K-Nearest Neighbors (KNN) method

In this study describe the implementation of speech recognition to pick and place an object using 5 DoF Robot Arm based on Arduino Microcontroller. To identify the speech used Mel-Frequency Cepstrum Coefficients (MFCC) method to get feature extraction and K-Nearest Neighbors (KNN) method to learn and identify the speech recognition based on Python 2.7. The database of speech use 12 feature for KNN process, then tested using trained (85%) and not trained (80%) respondent show the best agreement result to identifying the speech recognition. Finally, the speech recognition system implemented to control Robot Arm for perform assignment pick and place the object.

[1]  Ranjan Parekh,et al.  Recognition of Isolated Words using Features based on LPC, MFCC, ZCR and STE, with Neural Network Classifiers , 2012 .

[2]  Thomas M. Cover,et al.  Estimation by the nearest neighbor rule , 1968, IEEE Trans. Inf. Theory.

[3]  Kais Ouni,et al.  A novel phonemes classification method using fuzzy logic , 2013 .

[5]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[6]  R. Rizal Isnanto,et al.  Aplikasi Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients (MFCC) Melalui Jaringan Syaraf Tiruan (JST) Learning Vector Quantization (LVQ) untuk Mengoperasikan Kursor Komputer , 2011 .

[7]  Thiang,et al.  SPEECH RECOGNITION USING LPC AND HMM APPLIED FOR CONTROLLING MOVEMENT OF MOBILE ROBOT , 2011 .

[8]  Zabidin Salleh,et al.  Implementasi Pengenalan Pola Suara Menggunakan Mel-Frequency Cepstrum Coefficients(MFCC) dan Adaptive Neuro-Fuzzy Inferense System(ANFIS) sebagai Kontrol Lampu Otomatis , 2014 .

[9]  I Nyoman Kusuma Wardana,et al.  Identifikasi Biometrik Intonasi Suara untuk Sistem Keamanan Berbasis Mikrokomputer , 2014 .

[10]  Ines BEN FREDJ,et al.  Optimization of Features Parameters for HMM Phoneme Recognition of TIMIT Corpus , 2013 .

[11]  Rajni Mehta Speech Recognition Techniques: A Review , 2014 .

[12]  S. Imandoust,et al.  Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoretical Background , 2013 .

[13]  W. S. Mada Sanjaya,et al.  Sistem Kontrol Robot Arm 5 DOF Berbasis Pengenalan Pola Suara Menggunakan Mel-Frequency Cepstrum Coefficients (MFCC) dan Adaptive Neuro-Fuzzy Inference System (ANFIS) , 2016 .

[14]  Atul Kumar,et al.  Speech Recognition Based Wheelchair Using Device Switching , 2014 .

[15]  Ali Mustofa Sistem Pengenalan Penutur dengan Metode Mel-frequency Wrapping , 2008 .

[16]  Suryo Wijoyo,et al.  Speech Recognition Using Linear Predictive Coding and Artificial Neural Network for Controlling Movement of Mobile Robot , 2011 .

[17]  W. S. Mada Sanjaya,et al.  Speech Recognition using Linear Predictive Coding (LPC) and Adaptive Neuro-Fuzzy (ANFIS) to Control 5 DoF Arm Robot , 2018, Journal of Physics: Conference Series.

[18]  W S M Sanjaya,et al.  The Implementation of Speech Recognition using Mel-Frequency Cepstrum Coefficients (MFCC) and Support Vector Machine (SVM) method based on Python to Control Robot Arm , 2018 .

[20]  Christoph Bartneck,et al.  You just do not understand me! Speech Recognition in Human Robot Interaction , 2014, The 23rd IEEE International Symposium on Robot and Human Interactive Communication.

[21]  Hamid Parvin,et al.  A Modification on K-Nearest Neighbor Classifier , 2010 .

[22]  Ratnadeep R. Deshmukh,et al.  KNN based emotion recognition system for isolated Marathi speech , 2015 .