Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics

A nanomechanical oscillator coupled to a superconducting waveguide provides all-microwave field-controlled tunable slowing and advancing of microwave signals, with millisecond distortion-free delay and negligible losses.

[1]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical Review Letters.

[2]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[3]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[4]  Samuel L. Braunstein,et al.  Quantum-state transfer from light to macroscopic oscillators , 2003 .

[5]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[6]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[7]  J. Longdell,et al.  Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. , 2005, Physical review letters.

[8]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[9]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[10]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[11]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[12]  Michael L. Roukes,et al.  Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators , 2006 .

[13]  R J Schoelkopf,et al.  Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. , 2006, Physical review letters.

[14]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[15]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[16]  R. J. Schoelkopf,et al.  Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier , 2007, 0706.0765.

[17]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[18]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[19]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[20]  J. Teufel,et al.  Dynamical backaction of microwave fields on a nanomechanical oscillator. , 2008, Physical review letters.

[21]  I. Mahboob,et al.  Bit storage and bit flip operations in an electromechanical oscillator. , 2008, Nature nanotechnology.

[22]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[23]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[24]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[25]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[26]  J. B. Hertzberg,et al.  Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.

[27]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[28]  Thomas Faust,et al.  Nonlinear switching dynamics in a nanomechanical resonator , 2009, 0909.3698.

[29]  S. Deleglise,et al.  Determination of the vacuum optomechanical coupling rate using frequency noise calibration. , 2010, Optics Express.

[30]  J. Ignacio Cirac,et al.  Optically Levitating Dielectrics in the Quantum Regime: Theory and Protocols , 2010, 1010.3109.

[31]  G. S. Agarwal,et al.  Electromagnetically induced transparency in mechanical effects of light , 2009, 0911.4157.

[32]  K. Jacobs,et al.  Ultraefficient cooling of resonators: beating sideband cooling with quantum control. , 2011, Physical review letters.

[33]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[34]  Lin Tian,et al.  Storing optical information as a mechanical excitation in a silica optomechanical resonator. , 2011, Physical review letters.

[35]  T. Palomaki,et al.  Demonstration of a single-photon router in the microwave regime. , 2011, Physical review letters.

[36]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[37]  S Onoda,et al.  Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. , 2011, Physical review letters.

[38]  Tunable pulse delay and advancement device based on a cavity electromechanical system , 2011 .

[39]  S. Deleglise,et al.  Optomechanically Induced Transparency , 2011 .

[40]  T. Alegre Electromagnetically Induced Transparency and Slow Light with Optomechanics , 2012 .

[41]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[42]  Ying-Dan Wang,et al.  Using interference for high fidelity quantum state transfer in optomechanics. , 2011, Physical review letters.

[43]  S. Deleglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2012, CLEO 2012.

[44]  Lin Tian,et al.  Adiabatic state conversion and pulse transmission in optomechanical systems. , 2011, Physical review letters.

[45]  T. Palomaki,et al.  State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime , 2012, 1206.5562.

[46]  T. A. Palomaki,et al.  Coherent state transfer between itinerant microwave fields and a mechanical oscillator , 2012, Nature.

[47]  Mika A. Sillanpää,et al.  Microwave amplification with nanomechanical resonators , 2013, ISSCC.

[48]  Ling Hao,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2014 .