Resolution of Degeneracy in Merton's Portfolio Problem

The Merton problem determines the optimal intertemporal portfolio choice by maximizing the expected utility and is the basis of modern portfolio theory in continuous-time finance. However, its empirical performance is disappointing. The estimation errors of the expected rates of returns make the optimal policy degenerate, resulting in an extremely low (or unbounded) expected utility value for a high-dimensional portfolio. We further prove that the estimation error of the variance-covariance matrix leads to the degenerated policy of solely investing in the risk-free asset. This study proposes a constrained $\ell_1$-minimization approach to resolve the degeneracy in the high-dimensional setting and stabilize the performance in the low-dimensional setting. The proposed scheme can be implemented with simple linear programming and involves negligible additional computational time, compared to standard estimation. We prove the consistency of our framework that our estimate of the optimal control tends to be the...

[1]  Noureddine El Karoui,et al.  High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation , 2010, 1211.2917.

[2]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[3]  Luitgard A. M. Veraart,et al.  Optimal Diversification in the Presence of Parameter Uncertainty for a Risk Averse Investor , 2014, SIAM J. Financial Math..

[4]  Ke Yu,et al.  Constraints , 2019, Sexual Selection.

[5]  Axel Gandy,et al.  THE EFFECT OF ESTIMATION IN HIGH‐DIMENSIONAL PORTFOLIOS , 2013 .

[6]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[7]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[8]  Thaleia Zariphopoulou,et al.  A solution approach to valuation with unhedgeable risks , 2001, Finance Stochastics.

[9]  P. Bickel,et al.  Some theory for Fisher''s linear discriminant function , 2004 .

[10]  T. Cai,et al.  A Direct Estimation Approach to Sparse Linear Discriminant Analysis , 2011, 1107.3442.

[11]  T. R. Hurd,et al.  Portfolio choice with jumps: A closed-form solution , 2009, 0906.2324.

[12]  I. Daubechies,et al.  Sparse and stable Markowitz portfolios , 2007, Proceedings of the National Academy of Sciences.

[13]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[14]  Chi Seng Pun,et al.  Robust Investment-Reinsurance Optimization with Multiscale Stochastic Volatility , 2015 .

[15]  K. Karlsen,et al.  Merton's portfolio optimization problem in a Black and Scholes market with non‐Gaussian stochastic volatility of Ornstein‐Uhlenbeck type , 2003 .

[16]  Lorenzo Garlappi,et al.  Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach , 2004 .

[17]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[18]  Paolo Brandimarte,et al.  Numerical Methods in Finance and Economics: A MATLAB-Based Introduction , 2006 .

[19]  Peter C. Schotman,et al.  Long-Term Strategic Asset Allocation: An Out-of-Sample Evaluation , 2014, Manag. Sci..

[20]  Ya'acov Ritov,et al.  Discussion: The Dantzig selector: statistical estimation when $p$ is much larger than $n$ , 2008, 0803.3130.

[21]  Markus K. Brunnermeier,et al.  Do Wealth Fluctuations Generate Time-Varying Risk Aversion? Micro-Evidence on Individuals' Asset Allocation , 2008 .

[22]  M. Bock Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1975 .

[23]  Jianqing Fan,et al.  High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data , 2010 .

[24]  Ken-ichi Inada,et al.  On a Two-Sector Model of Economic Growth: Comments and a Generalization , 1963 .

[25]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[26]  Fei Zou,et al.  Convergence of Sample Eigenvalues, Eigenvectors, and Principal Component Scores for Ultra-High Dimensional Data. , 2014, Biometrika.

[27]  Nicholas J. Higham,et al.  Restoring Definiteness via Shrinking, with an Application to Correlation Matrices with a Fixed Block , 2016, SIAM Rev..

[28]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[29]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[30]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[31]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[32]  Chi Seng Pun,et al.  High-Dimensional Static and Dynamic Portfolio Selection Problems via ℓ1 Minimization , 2015 .

[33]  Mark Broadie,et al.  Computing efficient frontiers using estimated parameters , 1993, Ann. Oper. Res..

[34]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[35]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[36]  Ronnie Sircar,et al.  Portfolio Optimization & Stochastic Volatility Asymptotics , 2013 .

[37]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[38]  R. Tibshirani,et al.  Discussion: The Dantzig selector: Statistical estimation when p is much larger than n , 2007, 0803.3126.

[39]  Jean-Pierre Fouque,et al.  Portfolio Optimization with Ambiguous Correlation and Stochastic Volatilities , 2014 .

[40]  Giuseppe Cappelletti,et al.  Do Wealth Fluctuations Generate Time-Varying Risk Aversion? Italian Micro-Evidence on Household Asset Allocation , 2012 .