Reduction of 5-nitro-6-D-ribitylaminouracil (9) afforded 5-amino-6-D-ribitylaminouracil (1), which reacted with ethyl chloroformate to yield 5-ethylcarbamoyl-6-D-ribitylaminouracil (12). The latter compound was cyclized to 9-D-ribityl-1,3,7-trihydropurine-2,6,8-trione (13), which was found to be a relatively potent inhibitor of both Escherichia coli riboflavin synthase (K(i) 0.61 microM) and Bacillus subtilis lumazine synthase (K(i) 46 microM). Molecular modeling of the lumazine synthase-inhibitor complex indicated the possibility for hydrogen bonding between the Lys135 epsilon-amino group of the enzyme and both the 8-keto group and the 4'-hydroxyl group of the ligand. A bisubstrate analogue of the riboflavin synthase-catalyzed reaction, 1,4-bis[1-(9-D-ribityl-1,3,7-trihydropurine-2,6,8-trionyl)]butane (18), was also synthesized using a similar route and was found to be inactive as an inhibitor of both riboflavin synthase and lumazine synthase.