A dynamical control view on synchronization

Synchronization of complex/chaotic systems is reviewed from a dynamical control perspective. It is shown that notions like observer and feedback control are essential in the problem of how to achieve synchronization between two systems on the basis of partial state measurements of one of the systems. Examples are given to demonstrate the main results.

[1]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[2]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[3]  H. Cerdeira,et al.  Partial synchronization and spontaneous spatial ordering in coupled chaotic systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  L. Dussopt,et al.  Coupled oscillator array generating circular polarization [active antenna] , 1999 .

[5]  Michael Rosenblum,et al.  Synchronization and chaotization in interacting dynamical systems , 1995 .

[6]  Kevin M. Short,et al.  Steps Toward Unmasking Secure Communications , 1994 .

[7]  Carlos Canudas de Wit,et al.  Trajectory tracking in robot manipulators via nonlinear estimated state feedback , 1992, IEEE Trans. Robotics Autom..

[8]  Vladimir belykh,et al.  Invariant manifolds and cluster synchronization in a family of locally coupled map lattices , 2000 .

[9]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[10]  A. Winfree The geometry of biological time , 1991 .

[11]  Kevin M. Short,et al.  UNMASKING A MODULATED CHAOTIC COMMUNICATIONS SCHEME , 1996 .

[12]  George W. Polites,et al.  An introduction to the theory of groups , 1968 .

[13]  H Henk Nijmeijer,et al.  Regulation and controlled synchronization for complex dynamical systems , 2000 .

[14]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[15]  H. Nijmeijer,et al.  Coordination of two robot manipulators based on position measurements only , 2001 .

[16]  J. Suykens,et al.  Robust synthesis for master-slave synchronization of Lur'e systems , 1999 .

[17]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[18]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[19]  Alexander L. Fradkov,et al.  On self-synchronization and controlled synchronization , 1997 .

[20]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[21]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[22]  Erik Mosekilde,et al.  Loss of synchronization in coupled Rössler systems , 2001 .

[23]  A. B. Rami Shani,et al.  Matrices: Methods and Applications , 1992 .

[24]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[25]  Ned J. Corron,et al.  A new approach to communications using chaotic signals , 1997 .

[26]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[27]  Erik Mosekilde,et al.  Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators , 2001 .

[28]  H. Shim,et al.  A Simple Observer for Nonlinear Systems in x-coordinate using Lipschitz Extension Technique , 2000 .

[29]  S Boccaletti,et al.  Unifying framework for synchronization of coupled dynamical systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  V N Belykh,et al.  Cluster synchronization modes in an ensemble of coupled chaotic oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[32]  Matthew Nicol,et al.  On the unfolding of a blowout bifurcation , 1998 .

[33]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[34]  Nikolai F. Rulkov,et al.  Images of synchronized chaos: Experiments with circuits. , 1996, Chaos.

[35]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[36]  Henk Nijmeijer,et al.  Synchronization through Filtering , 2000, Int. J. Bifurc. Chaos.

[37]  David J. Hill,et al.  Strict Quasipassivity and Ultimate Boundedness for Nonlinear Control Systems , 1998 .

[38]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[39]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[40]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[41]  Leon O. Chua,et al.  On a conjecture regarding the synchronization in an array of linearly coupled dynamical systems , 1996 .

[42]  J. Salz,et al.  Synchronization Systems in Communication and Control , 1973, IEEE Trans. Commun..

[43]  Henk Nijmeijer,et al.  Adaptive observer based synchronisation , 1999 .

[44]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.

[45]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[46]  Chen Yangzhou,et al.  Frequency Theorem (Kalman-Yakubovich Lemma)in Control Theory , 1998 .

[47]  Guanrong Chen Controlling Chaos and Bifurcations in Engineering Systems , 1999 .

[48]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[49]  David J. Hill,et al.  Exponential Feedback Passivity and Stabilizability of Nonlinear Systems , 1998, Autom..

[50]  H. Nijimeijer,et al.  On synchronization of chaotic systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[51]  Brad Paden,et al.  Globally asymptotically stable ‘PD+’ controller for robot manipulators , 1988 .

[52]  Alexander Yu. Pogromsky,et al.  OBSERVER-BASED ROBUST SYNCHRONIZATION OF DYNAMICAL SYSTEMS , 1998 .

[53]  Baier,et al.  Design of hyperchaotic flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  Robert R. Bitmead,et al.  Conditions for stability of the extended Kalman filter and their application to the frequency tracking problem , 1995, Math. Control. Signals Syst..

[55]  S. Nicosia,et al.  Robot control by using only joint position measurements , 1990 .

[56]  L. Pecora Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems , 1998 .

[57]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[58]  H. Nijmeijer,et al.  Cooperative oscillatory behavior of mutually coupled dynamical systems , 2001 .

[59]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[60]  Nancy Kopell,et al.  Networks of neurons as dynamical systems: from geometry to biophysics , 1998 .

[61]  Ljupco Kocarev,et al.  A unifying definition of synchronization for dynamical systems. , 1998, Chaos.

[62]  Ute Feldmann,et al.  Communication by chaotic signals: the inverse system approach , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[63]  V. Torre,et al.  A theory of synchronization of heart pace-maker cells. , 1976, Journal of theoretical biology.

[64]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[65]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[66]  H. Nijmeijer,et al.  A control perspective on communication using chaotic systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[67]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[68]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[70]  S. Smale,et al.  A Mathematical Model of Two Cells Via Turing’s Equation , 1976 .

[71]  Tambe,et al.  Driving systems with chaotic signals. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[72]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[73]  R. Marino On the largest feedback linearizable subsystem , 1986 .

[74]  Belykh,et al.  Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[75]  Hjc Henri Huijberts,et al.  Characterization of static feedback realizable transfer functions for nonlinear control systems , 1998 .

[76]  Henk Nijmeijer,et al.  Synchronization through extended Kalman filtering , 1999 .

[77]  H. Nijmeijer,et al.  Robust control of robots via linear estimated state feedback , 1994, IEEE Trans. Autom. Control..

[78]  Henk Nijmeijer Adaptive/Robust Control of Chaotic Systems , 1997 .

[79]  Tatsuo Itoh,et al.  Progress in active integrated antennas and their applications , 1998 .

[80]  T. Glad,et al.  On Diffusion Driven Oscillations in Coupled Dynamical Systems , 1999 .

[81]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[82]  Henk Nijmeijer Control of chaos and synchronization , 1997 .

[83]  J. S. Thorp,et al.  PDMA-1: chaotic communication via the extended Kalman filter , 1998 .

[84]  C. C. Wit,et al.  Robot control via robust estimated state feedback , 1991 .

[85]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[86]  S. Shankar Sastry,et al.  Adaptive Control of Mechanical Manipulators , 1987, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[87]  Yunhui Liu,et al.  Cooperation control of multiple manipulators with passive joints , 1999, IEEE Trans. Robotics Autom..

[88]  M. Hasler,et al.  Communication by chaotic signals : the inverse system approach , 1996 .

[89]  Leon O. Chua,et al.  EXPERIMENTAL CHAOS SYNCHRONIZATION IN CHUA'S CIRCUIT , 1992 .

[90]  Kosei Kitagaki,et al.  Decentralized adaptive control of multiple manipulators in co-operations , 1997 .

[91]  V O Bolshoy,et al.  PASSIVITY BASED DESIGN OF SYNCHRONIZING SYSTEMS , 1998 .

[92]  J. Yorke,et al.  Coping with chaos. Analysis of chaotic data and the exploitation of chaotic systems , 1994 .

[93]  Spiegel,et al.  On-off intermittency: A mechanism for bursting. , 1993, Physical review letters.

[94]  Ian Stewart,et al.  Coupled cells with internal symmetry: I. Wreath products , 1996 .

[95]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[96]  G. Leitmann,et al.  Robustness of uncertain systems in the absence of matching assumptions , 1987 .

[97]  A.L. Fradkov,et al.  Self-synchronization and controlled synchronization , 1997, 1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No.97TH8329).

[98]  Ott,et al.  Optimal periodic orbits of chaotic systems occur at low period. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[99]  Stephen P. Boyd,et al.  Necessary and sufficient conditions for parameter convergence in adaptive control , 1986, Autom..

[100]  Henk Nijmeijer,et al.  System identification in communication with chaotic systems , 2000 .

[101]  Hassan K. Khalil,et al.  Adaptive output feedback control of robot manipulators using high-gain observer , 1997 .

[102]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .