Renal cancer: oxygen meets metabolism.

Over the last two decades molecular studies of inherited tumor syndromes that are associated with the development of kidney cancer have led to the identification of genes and biochemical pathways, which play key roles in the malignant transformation of renal epithelial cells. Some of these findings have broad biological impact and extend beyond renal cancer. This review's focus is on the von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF) oxygen-sensing pathway and its role in physiology, energy metabolism and tumorigenesis.

[1]  M. Tran,et al.  Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. , 2006, Journal of the American Society of Nephrology : JASN.

[2]  D. Bottaro,et al.  The von Hippel–Lindau tumor suppressor gene product represses oncogenic β-catenin signaling in renal carcinoma cells , 2006, Proceedings of the National Academy of Sciences.

[3]  R. R. Lonser,et al.  von Hippel-Lindau disease , 2003, The Lancet.

[4]  J. Holley Screening, diagnosis, and treatment of cancer in long-term dialysis patients. , 2007, Clinical journal of the American Society of Nephrology : CJASN.

[5]  William Y. Kim,et al.  Loss of JAK2 regulation via a heterodimeric VHL-SOCS1 E3 ubiquitin ligase underlies Chuvash polycythemia , 2011, Nature Medicine.

[6]  G. Semenza,et al.  Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. , 2006, Cancer research.

[7]  Brian Keith,et al.  Differential Roles of Hypoxia-Inducible Factor 1α (HIF-1α) and HIF-2α in Hypoxic Gene Regulation , 2003, Molecular and Cellular Biology.

[8]  J. Gnarra,et al.  Identification of the von Hippel-Lindau disease tumor suppressor gene. , 1993, Science.

[9]  P. Choyke,et al.  Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. , 1999, The American journal of pathology.

[10]  D. Seldin,et al.  Jade-1 inhibits Wnt signaling by ubiquitinating β-catenin and mediates Wnt pathway inhibition by pVHL , 2008, Nature Cell Biology.

[11]  P. Comoglio,et al.  Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. , 2003, Cancer cell.

[12]  J. Haines,et al.  Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma , 1988, Nature.

[13]  Greg Finak,et al.  Regulation of endocytosis via the oxygen-sensing pathway , 2009, Nature Medicine.

[14]  Patrick H. Maxwell,et al.  Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma , 2005, Molecular and Cellular Biology.

[15]  W. Kaelin,et al.  Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. , 2008, Molecular cell.

[16]  Alison Martin,et al.  Targeted inactivation of fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. , 2007, Cancer cell.

[17]  D. Louis,et al.  The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. , 1998, Molecular cell.

[18]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[19]  R. Figlin,et al.  Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. , 2007, The New England journal of medicine.

[20]  W. Kaelin,et al.  Role of VHL gene mutation in human cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  L. Gunaratnam,et al.  Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/- renal cancer. , 2005, Cancer research.

[22]  H. Neumann,et al.  Genotype–phenotype correlations in von hippel–lindau disease , 1998, Journal of internal medicine.

[23]  G. Semenza,et al.  HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells , 2007, Cell.

[24]  B. Devlin,et al.  Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. , 2000, Science.

[25]  E. Rankin,et al.  Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice , 2008, Oncogene.

[26]  R. Klausner,et al.  The von Hippel-Lindau Tumor Suppressor Gene Inhibits Hepatocyte Growth Factor/Scatter Factor-Induced Invasion and Branching Morphogenesis in Renal Carcinoma Cells , 1999, Molecular and Cellular Biology.

[27]  L. Neckers,et al.  Stabilization of wild-type p53 by hypoxia-inducible factor 1α , 1998, Nature.

[28]  M. Ohh,et al.  Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. , 2006, Cancer research.

[29]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[30]  Martin S. Taylor,et al.  Genetic Analysis of Pathways Regulated by the von Hippel-Lindau Tumor Suppressor in Caenorhabditis elegans , 2004, PLoS biology.

[31]  P. Thibault,et al.  Transcription Factor HIF-1 Is a Necessary Mediator of the Pasteur Effect in Mammalian Cells , 2001, Molecular and Cellular Biology.

[32]  M. Yáñez-Mó,et al.  von Hippel-Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. , 2006, Cancer research.

[33]  Mirna Lechpammer,et al.  Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. , 2002, Cancer cell.

[34]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[35]  A. Nagy,et al.  Lack of mutation of the folliculin gene in sporadic chromophobe renal cell carcinoma and renal oncocytoma , 2004, International journal of cancer.

[36]  G. Semenza,et al.  Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia* , 2008, Journal of Biological Chemistry.

[37]  W. Rathmell,et al.  von Hippel-Lindau mutation in mice recapitulates Chuvash polycythemia via hypoxia-inducible factor-2alpha signaling and splenic erythropoiesis. , 2007, The Journal of clinical investigation.

[38]  B. Zbar,et al.  Renal cysts, renal cancer and von Hippel-Lindau disease. , 1997, Kidney international.

[39]  W. Krek,et al.  Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. , 2009, Cell metabolism.

[40]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[41]  R. Raval,et al.  Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. , 2006, Cancer research.

[42]  G. Berx,et al.  VHL Promotes E2 Box-Dependent E-Cadherin Transcription by HIF-Mediated Regulation of SIP1 and Snail , 2006, Molecular and Cellular Biology.

[43]  Yuichi Makino,et al.  Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression , 2001, Nature.

[44]  R. Burk,et al.  VHL Induces Renal Cell Differentiation and Growth Arrest through Integration of Cell-Cell and Cell-Extracellular Matrix Signaling , 2001, Molecular and Cellular Biology.

[45]  C. Wykoff,et al.  Genetic Analysis of the Role of the Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-inducible Factor (HIF) in Regulating HIF Transcriptional Target Genes* , 2004, Journal of Biological Chemistry.

[46]  R. Motzer,et al.  Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial , 2008, The Lancet.

[47]  H. Zentgraf,et al.  The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth , 2006, The Journal of cell biology.

[48]  J. Epstein,et al.  Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. , 2010, Blood.

[49]  G. Semenza,et al.  HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. , 2006, Cell metabolism.

[50]  B. Yoder,et al.  Role of primary cilia in the pathogenesis of polycystic kidney disease. , 2007, Journal of the American Society of Nephrology : JASN.

[51]  A. Pause,et al.  Collagen matrix assembly is driven by the interaction of von Hippel–Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2 , 2008, Oncogene.

[52]  C. Sternberg,et al.  Pazopanib in Locally Advanced or Metastatic Renal Cell Carcinoma: Results of a Randomized Phase III Trial , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[53]  R. Houlston,et al.  Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease. , 2002, Cancer research.

[54]  Richard D Klausner,et al.  The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. , 2002, Cancer cell.

[55]  M. Ivan,et al.  von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. , 2001, Human molecular genetics.

[56]  P. Ratcliffe,et al.  Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. , 2001, Human molecular genetics.

[57]  V. Haase,et al.  The VHL tumor suppressor and HIF: insights from genetic studies in mice , 2008, Cell Death and Differentiation.

[58]  Charles C Wykoff,et al.  HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. , 2002, Cancer cell.

[59]  William Y. Kim,et al.  Dominant-Negative HIF-3α4 Suppresses VHL-Null Renal Cell Carcinoma Progression , 2007 .

[60]  John D Gordan,et al.  HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. , 2007, Cancer cell.

[61]  Christopher J. Schofield,et al.  Oxygen sensing by HIF hydroxylases , 2004, Nature Reviews Molecular Cell Biology.

[62]  G. Camenisch,et al.  Integration of Oxygen Signaling at the Consensus HRE , 2005, Science's STKE.

[63]  S. Welford,et al.  Renal Oxygenation Suppresses VHL Loss-Induced Senescence That Is Caused by Increased Sensitivity to Oxidative Stress , 2010, Molecular and Cellular Biology.

[64]  Matthew K. Knabel,et al.  Pyruvate Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1 , 2011, Cell.

[65]  L. Aaltonen,et al.  Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. , 2004, American journal of human genetics.

[66]  A. Vortmeyer,et al.  Combined Vhlh and Pten Mutation Causes Genital Tract Cystadenoma and Squamous Metaplasia , 2008, Molecular and Cellular Biology.

[67]  S. Richard,et al.  Inactivation of BHD in sporadic renal tumors. , 2003, Cancer research.

[68]  K. Schwarz,et al.  Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene and VHL-haplotype analysis in patients with presumable congenital erythrocytosis. , 2005, Haematologica.

[69]  I. Mellinghoff,et al.  Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer , 2006, Nature Medicine.

[70]  W. Krek,et al.  Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL , 2003, Nature Cell Biology.

[71]  Claudio R. Thoma,et al.  pVHL and GSK3β are components of a primary cilium-maintenance signalling network , 2007, Nature Cell Biology.

[72]  A. Harris,et al.  Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. , 2002, Cancer research.

[73]  E. Rankin,et al.  Hypoxia-Inducible Factor 2 Regulates Hepatic Lipid Metabolism , 2009, Molecular and Cellular Biology.

[74]  B. Ebert,et al.  pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. , 2007, Molecular cell.

[75]  L. Schmidt,et al.  Searching for the hereditary causes of renal-cell carcinoma , 2004, Nature Reviews Cancer.

[76]  E. Cho,et al.  p53 stabilization and transactivation by a von Hippel-Lindau protein. , 2006, Molecular cell.

[77]  V. Haase Hypoxia-inducible factors in the kidney. , 2006, American journal of physiology. Renal physiology.

[78]  C. Sotiriou,et al.  Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene , 2004, British Journal of Cancer.

[79]  Christine C. Hudson,et al.  Regulation of Hypoxia-Inducible Factor 1α Expression and Function by the Mammalian Target of Rapamycin , 2002, Molecular and Cellular Biology.

[80]  H. Moch,et al.  pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation , 2008, The EMBO journal.

[81]  J. Pouysségur,et al.  pH control mechanisms of tumor survival and growth , 2011, Journal of cellular physiology.

[82]  L. del Peso,et al.  Hypoxia Promotes Glycogen Accumulation through Hypoxia Inducible Factor (HIF)-Mediated Induction of Glycogen Synthase 1 , 2010, PloS one.

[83]  Seth M Steinberg,et al.  A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. , 2003, The New England journal of medicine.

[84]  G. Semenza,et al.  HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. , 2007, Cancer cell.

[85]  N. Denko,et al.  HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. , 2006, Cell metabolism.

[86]  J. Maynard,et al.  Analysis of the TSC1and TSC2genes in sporadic renal cell carcinomas , 2001, British Journal of Cancer.

[87]  H. Moch,et al.  Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma , 2004, Journal of Clinical Pathology.

[88]  O. Iliopoulos,et al.  Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. , 2004, Molecular cancer research : MCR.

[89]  N. Chandel,et al.  Mitochondrial Metabolism and Cancer , 2009, Annals of the New York Academy of Sciences.

[90]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[91]  S. Signoretti,et al.  VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400 , 2008, Nature Cell Biology.

[92]  David McDermott,et al.  Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. , 2007, The New England journal of medicine.

[93]  Thomas G. Smith,et al.  Competing Interests: PHM, CWP, , 2022 .

[94]  P. Maxwell,et al.  VHL inactivation induces HEF1 and Aurora kinase A. , 2010, Journal of the American Society of Nephrology : JASN.

[95]  A. Jemal,et al.  Cancer statistics, 2011 , 2011, CA: a cancer journal for clinicians.

[96]  Gurpreet W. Tang,et al.  Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes , 2009, Nature.

[97]  V. Haase Hypoxic regulation of erythropoiesis and iron metabolism. , 2010, American journal of physiology. Renal physiology.

[98]  Richard D Klausner,et al.  VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. , 2002, Cancer research.

[99]  Apurva A Desai,et al.  Sorafenib in advanced clear-cell renal-cell carcinoma. , 2007, The New England journal of medicine.

[100]  G. Semenza,et al.  Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. , 1999, Annual review of cell and developmental biology.

[101]  G. Semenza,et al.  Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. , 2000, Genes & development.

[102]  P. Crino,et al.  The tuberous sclerosis complex. , 2006, The New England journal of medicine.

[103]  W. Kaelin,et al.  Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[104]  W. Kaelin,et al.  Inhibition of HIF2α Is Sufficient to Suppress pVHL-Defective Tumor Growth , 2003, PLoS biology.

[105]  David Mole,et al.  Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia , 2002, Nature Genetics.

[106]  R. Burk,et al.  Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. , 2006, Cancer research.

[107]  H. Moch,et al.  Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL , 2003, Nature.

[108]  Jason W. Locasale,et al.  Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells , 2010, Science.

[109]  L. Hesson,et al.  Analysis of the Birt–Hogg–Dubé (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer , 2003, Journal of medical genetics.

[110]  Mora,et al.  The Mainz Classification of Renal Cell Tumors. , 1999, Cancer control : journal of the Moffitt Cancer Center.

[111]  Brian Keith,et al.  HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. , 2008, Cancer cell.