Historical Misconceptions in Autocorrelation Estimation

The sample autocovariance function, which is estimated as mean lagged products (LPs) of random observations, can also be obtained as the inverse Fourier transform of the periodogram of the data that are augmented with zeros. Hence, the quality of the sample autocovariance as a representation of stochastic data is the same as that of a raw periodogram. The LP estimate is not based on any efficient estimation principle for random data. The spectral density and the autocovariance function can be estimated much more accurately with parametric time series models. A recent development in time series analysis gives the possibility to select automatically the type and the order of the best time series model for any set of random observations. The spectral accuracy of the selected model is better than the accuracy of modified periodograms. In addition, the accuracy of the parametric estimate of the autocovariance function is the same or better for every individual lag than what can be achieved by the nonparametric mean-LP estimates. Perhaps even more important, the estimated time series parameters define the autocovariance as a complete function, for all lags together.

[1]  E. Robinson,et al.  A historical perspective of spectrum estimation , 1982, Proceedings of the IEEE.

[2]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[3]  Brett Ninness,et al.  The asymptotic CRLB for the spectrum of ARMA processes , 2003, IEEE Trans. Signal Process..

[4]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[5]  Piet M. T. Broersen,et al.  Bias propagation in the autocorrelation method of linear prediction , 1997, IEEE Trans. Speech Audio Process..

[6]  Piet M. T. Broersen,et al.  Automatic Autocorrelation and Spectral Analysis , 2006 .

[7]  A. Khintchine Korrelationstheorie der stationären stochastischen Prozesse , 1934 .

[8]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[9]  D. Luenberger,et al.  Estimation of structured covariance matrices , 1982, Proceedings of the IEEE.

[10]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[11]  Piet M. T. Broersen,et al.  Automatic spectral analysis with time series models , 2002, IEEE Trans. Instrum. Meas..

[12]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .

[13]  P.M.T. Broersen Persistent Misconceptions in Autocorrelation Estimation , 2006, 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings.

[14]  H. Akaike A new look at the statistical model identification , 1974 .

[15]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[16]  J. Cadzow Maximum Entropy Spectral Analysis , 2006 .

[17]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[18]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[19]  Piet M. T. Broersen The performance of spectral quality measures , 2001, IEEE Trans. Instrum. Meas..

[20]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[21]  Piet M. T. Broersen,et al.  Let the Data Speak for Themselves , 2007, IEEE Transactions on Instrumentation and Measurement.

[22]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[23]  N. Wiener Generalized harmonic analysis , 1930 .

[24]  S. de Waele,et al.  Efficient estimation of autocorrelation functions of random data with time series models , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).