A new hydrodynamics code for Type Ia supernovae

A two-dimensional hydrodynamics code for Type Ia supernovae (SNIa) simulations is presented. The code includes a fifth-order shock-capturing scheme WENO, detailed nuclear reaction network, flame-capturing scheme and sub-grid turbulence. For post-processing we have developed a tracer particle scheme to record the thermodynamical history of the fluid elements. We also present a one-dimensional radiative transfer code for computing observational signals. The code solves the Lagrangian hydrodynamics and moment-integrated radiative transfer equations. A local ionization scheme and composition dependent opacity are included. Various verification tests are presented, including standard benchmark tests in one and two dimensions. SNIa models using the pure turbulent deflagration model and the delayed-detonation transition model are studied. The results are consistent with those in the literature. We compute the detailed chemical evolution using the tracer particles' histories, and we construct corresponding bolometric light curves from the hydrodynamics results. We also use a Graphics Processing Unit (GPU) to speed up the computation of some highly repetitive subroutines. We achieve an acceleration of 50 times for some subroutines and a factor of 6 in the global run time.

[1]  A. M. Lisewski,et al.  Constraints on the Delayed Transition to Detonation in Type Ia Supernovae , 1999, astro-ph/9910056.

[2]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[3]  G. Sharpe The structure of steady detonation waves in Type Ia supernovae: pathological detonations in C—O cores , 1999 .

[4]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[5]  Rong Wang,et al.  Linear Instability of the Fifth-Order WENO Method , 2007, SIAM J. Numer. Anal..

[6]  Wolfgang Hillebrandt,et al.  Turbulent Nuclear Flames in Type IA Supernovae , 1995 .

[7]  Tomasz Plewa,et al.  Detonating Failed Deflagration Model of Thermonuclear Supernovae. I. Explosion Dynamics , 2007 .

[8]  R. Kirshner,et al.  Confronting 2D delayed-detonation models with light curves and spectra of Type Ia supernovae , 2011, 1107.0009.

[9]  S. Woosley,et al.  A Comparative Modeling of Supernova 1993J , 1997 .

[10]  J. Niemeyer,et al.  A model for multidimensional delayed detonations in SN Ia explosions , 2005, astro-ph/0503617.

[11]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[12]  W. Hillebrandt,et al.  A localised subgrid scale model for fluid dynamical simulations in astrophysics II: Application to , 2006, astro-ph/0601500.

[14]  J. Niemeyer,et al.  C+O detonations in thermonuclear supernovae: interaction with previously burned material , 2006, astro-ph/0605293.

[15]  Richard H. White,et al.  The Hydrodynamic Behavior of Supernovae Explosions , 1964 .

[16]  A. Khokhlov The structure of detonation waves in supernovae , 1989 .

[17]  D. John Hillier,et al.  The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows , 1998 .

[18]  W. Hillebrandt,et al.  Full-star type Ia supernova explosion models , 2005 .

[19]  A. Khokhlov Flame Modeling in Supernovae , 1993 .

[20]  Zhiliang Xu,et al.  Conservative Front Tracking with Improved Accuracy , 2003, SIAM J. Numer. Anal..

[21]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[22]  A. Khokhlov Supernovae Deflagrations in Three Dimensions , 1994 .

[23]  David H. Sharp,et al.  Front Tracking Applied to Rayleigh–Taylor Instability , 1986 .

[24]  S. Blondin,et al.  One-dimensional delayed-detonation models of Type Ia supernovae: confrontation to observations at bolometric maximum , 2012, 1211.5892.

[25]  J. Wheeler,et al.  Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation , 1995 .

[26]  N. Itoh,et al.  Relativistic free-free opacity for a high-temperature stellar plasma , 1985 .

[28]  A. Acrivos,et al.  On the shape of a gas bubble in a viscous extensional flow , 1976, Journal of Fluid Mechanics.

[29]  D. Lamb,et al.  STUDY OF THE DETONATION PHASE IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE , 2008, 0806.4972.

[30]  R. Thomas,et al.  Time-dependent Monte Carlo Radiative Transfer Calculations for Three-dimensional Supernova Spectra, Light Curves, and Polarization , 2006, astro-ph/0606111.

[31]  W. Hillebrandt,et al.  Microscopic Instabilities of Nuclear Flames in Type IA Supernovae , 1995 .

[32]  S. E. Woosley,et al.  The conductive propagation of nuclear flames. I. Degenerate C+O and O+ Ne + Mg white dwarfs , 1992 .

[33]  Following multi-dimensional type Ia supernova explosion models to homologous expansion , 2004, astro-ph/0408296.

[34]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[35]  F. Douglas Swesty,et al.  The Accuracy, Consistency, and Speed of an Electron-Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy , 2000 .

[36]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[37]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[38]  M. Fink,et al.  Nucleosynthesis in thermonuclear supernovae with tracers: convergence and variable mass particles , 2010, 1005.5071.

[39]  Elaine S Oran,et al.  Deflagrations and detonations in thermonuclear supernovae. , 2004, Physical review letters.

[40]  D. Lamb,et al.  THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE , 2012, 1202.3997.

[41]  C. McNally,et al.  A WELL-POSED KELVIN–HELMHOLTZ INSTABILITY TEST AND COMPARISON , 2011, 1111.1764.

[42]  W. Hillebrandt,et al.  Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for type ia supernovae , 2013, 1308.3257.

[43]  A localised subgrid scale model for fluid dynamical simulations in astrophysics I: Theory and numerical tests , 2006, astro-ph/0601499.

[44]  S. Woosley,et al.  The Thermonuclear Explosion of Chandrasekhar Mass White Dwarfs , 1996, astro-ph/9607032.

[45]  A. Karp,et al.  The opacity of expanding media - The effect of spectral lines , 1977 .

[46]  L. B. Lucy,et al.  Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae , 2005 .

[47]  M. J. Clement Hydrodynamical Simulations of Rotating Stars. I. A Model for Subgrid-Scale Flow , 1993 .

[48]  Yongmin Zhang,et al.  Interface Tracking for Axisymmetric Flows , 2002, SIAM J. Sci. Comput..

[49]  O. E. Bronson Messer,et al.  Capturing the Fire: Flame Energetics and Neutronization for Type Ia Supernova Simulations , 2006, The Astrophysical Journal.

[50]  V. G. Weirs,et al.  On Validating an Astrophysical Simulation Code , 2002, astro-ph/0206251.

[51]  M. Misiaszek,et al.  Neutrino spectrum from the pair-annihilation process in the hot stellar plasma , 2005, astro-ph/0511555.

[52]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[53]  Detonating Failed Deflagration Model of Thermonuclear Supernovae. II. Comparison to Observations , 2006, astro-ph/0612198.

[54]  M. Kromer,et al.  Time-dependent three-dimensional spectrum synthesis for Type Ia supernovae , 2009, 0906.3152.

[55]  J. Lumley,et al.  A new Reynolds stress algebraic equation model , 1994 .

[56]  Alan Uomoto,et al.  THE TYPE IA SUPERNOVA 1986G IN NGC 5128 : OPTICAL PHOTOMETRY AND SPECTRA. , 1987 .

[57]  James Glimm,et al.  Front tracking for hyperbolic systems , 1981 .

[58]  Yasuhiro Mizobuchi,et al.  A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate , 2012 .

[59]  S. Woosley,et al.  TYPE Ia SUPERNOVAE: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR EDDY MODEL , 2008, 0811.3610.

[60]  J. T. Kriese,et al.  Luminosity of type I supernovae , 1980 .

[61]  J. Craig Wheeler,et al.  Deflagration-to-Detonation Transition in Thermonuclear Supernovae , 1996 .

[62]  A New Radiation Hydrodynamics Code and Application to the Calculation of Type IA Supernovae Light Curves and Continuum Spectra , 1993, astro-ph/9309015.

[63]  Off-Center Ignition in Type Ia Supernovae. I. Initial Evolution and Implications for Delayed Detonation , 2006, astro-ph/0609088.

[64]  B. Leibundgut,et al.  A distance-independent calibration of the luminosity of type Ia Supernovae and the Hubble constant , 1992 .

[65]  R. Harkness,et al.  Gamma-Ray Transfer and Energy Deposition in Supernovae , 1995, astro-ph/9501005.

[66]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[67]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[68]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[69]  Richard Kessler,et al.  THREE-DIMENSIONAL SIMULATIONS OF PURE DEFLAGRATION MODELS FOR THERMONUCLEAR SUPERNOVAE , 2013, 1307.8221.

[70]  Caltech,et al.  Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario , 2007, 0706.1094.

[71]  C. M. Lemos A simple numerical technique for turbulent flows with free surfaces , 1992 .

[72]  David Branch,et al.  Type Ia Supernovae as Standard Candles , 1993 .

[73]  Pocheau Scale invariance in turbulent front propagation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[74]  K. Nomoto,et al.  Carbon deflagration supernova, an alternative to carbon detonation , 1976 .

[75]  S. Woosley,et al.  Off-Center Deflagrations In Chandrasekhar Mass SN Ia Models , 1996, astro-ph/9605169.

[76]  The Physics of Type Ia Supernova Light Curves. II. Opacity and Diffusion , 1996, astro-ph/9611195.

[77]  F. Timmes,et al.  The Accuracy, Consistency, and Speed of Five Equations of State for Stellar Hydrodynamics , 1999 .

[78]  E. Baron,et al.  A 3D radiative transfer framework - VI. PHOENIX/3D example applications , 2009, 0911.3285.

[79]  Yongmin Zhang A two-dimensional flame tracking algorithm with application to Type Ia supernova , 2009 .

[80]  P. H. Hauschildt,et al.  A 3D radiative transfer framework VII. Arbitrary velocity fields in the Eulerian frame , 2010, 1007.3419.

[81]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[82]  Francis Timmes,et al.  An Inexpensive Nuclear Energy Generation Network for Stellar Hydrodynamics , 2000 .

[83]  H. Hayashi,et al.  Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes , 1996 .

[84]  Nucleosynthesis in multi-dimensional SN Ia explosions , 2004, astro-ph/0406281.

[85]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[86]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[87]  D. Lamb,et al.  Three-Dimensional Simulations of the Deflagration Phase of the Gravitationally Confined Detonation Model of Type Ia Supernovae , 2007 .

[88]  M. Rudman INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 671–691 (1997) VOLUME-TRACKING METHODS FOR INTERFACIAL FLOW CALCULATIONS , 2022 .

[89]  S. W,et al.  OFF-CENTER IGNITION IN TYPE IA SUPERNOVA: I. INITIAL EVOLUTION AND IMPLICATIONS FOR DELAYED DETONATI ON , 2006 .

[90]  W. Arnett,et al.  A possible model of supernovae: Detonation of12C , 1969 .

[91]  P. Nugent,et al.  Synthetic Spectra of Hydrodynamic Models of Type Ia Supernovae , 1996, astro-ph/9612044.

[92]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[93]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[94]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[95]  Stuart A. Sim,et al.  Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae , 2012, 1211.3015.

[96]  M. Chu,et al.  Dark-matter admixed white dwarfs , 2013, 1305.6142.

[97]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[98]  L. Lucy An iterative technique for solving equations of statistical equilibrium , 2001, astro-ph/0103338.

[99]  E. Oran,et al.  Three-dimensional Delayed-Detonation Model of Type Ia Supernovae , 2004, astro-ph/0409598.

[100]  M. Reinecke,et al.  Three-dimensional simulations of type Ia supernovae , 2002, astro-ph/0206459.

[101]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[102]  Xiaolin Li,et al.  Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions , 1999, SIAM J. Sci. Comput..