Gated Single-Molecule Transport in Double-Barreled Nanopores

Single-molecule methods have been rapidly developing with the appealing prospect of transforming conventional ensemble-averaged analytical techniques. However, challenges remain especially in improving detection sensitivity and controlling molecular transport. In this article, we present a direct method for the fabrication of analytical sensors that combine the advantages of nanopores and field-effect transistors for simultaneous label-free single-molecule detection and manipulation. We show that these hybrid sensors have perfectly aligned nanopores and field-effect transistor components making it possible to detect molecular events with up to near 100% synchronization. Furthermore, we show that the transport across the nanopore can be voltage-gated to switch on/off translocations in real time. Finally, surface functionalization of the gate electrode can also be used to fine tune transport properties enabling more active control over the translocation velocity and capture rates.

[1]  M. dal Peraro,et al.  Mapping the sensing spots of aerolysin for single oligonucleotides analysis , 2018, Nature Communications.

[2]  M. Toimil-Molares,et al.  Highly Sensitive Biosensing with Solid-State Nanopores Displaying Enzymatically Reconfigurable Rectification Properties. , 2018, Nano letters.

[3]  Cees Dekker,et al.  Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore , 2018, ACS nano.

[4]  M. Drndić,et al.  Signal and Noise in FET-Nanopore Devices. , 2018, ACS sensors.

[5]  Y. Long,et al.  A 30 nm Nanopore Electrode: Facile Fabrication and Direct Insights into the Intrinsic Feature of Single Nanoparticle Collisions. , 2018, Angewandte Chemie.

[6]  Joshua B Edel,et al.  Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers , 2017, Nature Communications.

[7]  D. Klenerman,et al.  Nanopore extended field-effect transistor for selective single-molecule biosensing , 2017, Nature Communications.

[8]  Shuai Chang,et al.  Simultaneous Ionic Current and Potential Detection of Nanoparticles by a Multifunctional Nanopipette. , 2016, ACS nano.

[9]  S. Maerkl,et al.  Single Molecule Localization and Discrimination of DNA-Protein Complexes by Controlled Translocation Through Nanocapillaries. , 2016, Nano letters.

[10]  Aaron T. Kuan,et al.  Ion selectivity of graphene nanopores , 2016, Nature Communications.

[11]  Takahide Yokoi,et al.  Side-gated ultrathin-channel nanopore FET sensors , 2016, Nanotechnology.

[12]  Cees Dekker,et al.  Graphene nanodevices for DNA sequencing. , 2016, Nature nanotechnology.

[13]  Stuart Lindsay,et al.  The promises and challenges of solid-state sequencing. , 2016, Nature nanotechnology.

[14]  T. Matsue,et al.  Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis. , 2016, ACS nano.

[15]  Sang-Hyun Oh,et al.  Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping , 2016, Nature Communications.

[16]  Building a better nanopore. , 2016, Nature nanotechnology.

[17]  A. Balan,et al.  Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection. , 2015, Small.

[18]  Oliver K Castell,et al.  High-throughput optical sensing of nucleic acids in a nanopore array , 2015, Nature nanotechnology.

[19]  C. Dekker,et al.  DNA nanopore translocation in glutamate solutions. , 2015, Nanoscale.

[20]  J. Edel,et al.  Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing , 2015, ACS applied materials & interfaces.

[21]  S. Knapp,et al.  Pim Kinase Inhibitors Evaluated with a Single-Molecule Engineered Nanopore Sensor. , 2015, Angewandte Chemie.

[22]  D. Klenerman,et al.  On-demand delivery of single DNA molecules using nanopipets. , 2015, ACS nano.

[23]  M. Sugimoto,et al.  DNA motion induced by electrokinetic flow near an Au coated nanopore surface as voltage controlled gate , 2015, Nanotechnology.

[24]  M. J. Kim,et al.  Electrodeposition and bipolar effects in metallized nanopores and their use in the detection of insulin. , 2015, Analytical chemistry.

[25]  S. Maier,et al.  Precise attoliter temperature control of nanopore sensors using a nanoplasmonic bullseye. , 2015, Nano letters.

[26]  Kenneth L. Shepard,et al.  Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths. , 2014, Nano letters.

[27]  Daniel S. Terry,et al.  The bright future of single-molecule fluorescence imaging. , 2014, Current opinion in chemical biology.

[28]  A. Ivanov,et al.  Single molecule ionic current sensing in segmented flow microfluidics. , 2014, Analytical chemistry.

[29]  David Klenerman,et al.  Electrochemical nanoprobes for single-cell analysis. , 2014, ACS nano.

[30]  Xiuqing Gong,et al.  Label-free in-flow detection of single DNA molecules using glass nanopipettes. , 2014, Analytical chemistry.

[31]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[32]  Anthony P F Turner,et al.  Biosensors: sense and sensibility. , 2013, Chemical Society reviews.

[33]  Joshua B Edel,et al.  Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. , 2013, Chemical Society reviews.

[34]  Ronald W. Davis,et al.  Control of DNA capture by nanofluidic transistors. , 2012, ACS nano.

[35]  Gustavo Stolovitzky,et al.  Slowing and controlling the translocation of DNA in a solid-state nanopore. , 2012, Nanoscale.

[36]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[37]  H. Shiku,et al.  Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. , 2011, Angewandte Chemie.

[38]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[39]  C. Dekker,et al.  Single-molecule transport across an individual biomimetic nuclear pore complex. , 2011, Nature nanotechnology.

[40]  Makusu Tsutsui,et al.  Controlling DNA translocation through gate modulation of nanopore wall surface charges. , 2011, ACS nano.

[41]  Sheereen Majd,et al.  Controlling the translocation of proteins through nanopores with bioinspired fluid walls , 2011, Nature nanotechnology.

[42]  David W. McComb,et al.  DNA Tunneling Detector Embedded in a Nanopore , 2010, Nano letters.

[43]  Jongin Hong,et al.  Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[45]  S. Turner,et al.  Real-time DNA sequencing from single polymerase molecules. , 2010, Methods in enzymology.

[46]  Hongbo Peng,et al.  Reverse DNA translocation through a solid-state nanopore by magnetic tweezers , 2009, Nanotechnology.

[47]  Sung-Wook Nam,et al.  Ionic field effect transistors with sub-10 nm multiple nanopores. , 2009, Nano letters.

[48]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[49]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[50]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[51]  Marc Gershow,et al.  Recapturing and trapping single molecules with a solid-state nanopore. , 2007, Nature nanotechnology.

[52]  Meni Wanunu,et al.  Chemically modified solid-state nanopores. , 2007, Nano letters.

[53]  A. Turner,et al.  Home blood glucose biosensors: a commercial perspective. , 2005, Biosensors & bioelectronics.

[54]  A. Majumdar,et al.  Electrostatic control of ions and molecules in nanofluidic transistors. , 2005, Nano letters.

[55]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[57]  H. Eyring,et al.  Zero-Charge Potentials of Solid Metals , 1964 .

[58]  H. Walba,et al.  Acidity Constants of Some Arylimidazoles and Their Cations , 1961 .