On a variational theory of image amodal completion

We study a variational model for image amodal completion, i.e., the recovery of missing or damaged portions of a digital image by technics inspired by the well-known amodal completion process in human vision. Representing the image by a real-valued function and following an idea initially proposed in [32], our approach consists in finding a set of interpolating level lines which is optimal with respect to an appropriate criterion. We prove that this method is theoretically well-founded and we show the equivalence with a more classical approach based on a direct interpolation of the function.

[1]  G. Bellettini Variational approximation of functionals with curvatures and related properties , 1997 .

[2]  G. Matheron Random Sets and Integral Geometry , 1976 .

[3]  G. Bellettini,et al.  A varifolds representation of the relaxed elastica functional , 2007 .

[4]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[5]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[6]  Steven J. Ruuth,et al.  Threshold dynamics for shape reconstruction and disocclusion , 2005, IEEE International Conference on Image Processing 2005.

[7]  Jean Petitot,et al.  Neurogeometry of V1 and Kanizsa Contours , 2002 .

[8]  Tony F. Chan,et al.  Non-texture inpainting by curvature-driven diffusions (CDD) , 2001 .

[9]  Simon Masnou,et al.  Disocclusion: a variational approach using level lines , 2002, IEEE Trans. Image Process..

[10]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Louis Laborelli,et al.  Missing data correction in still images and image sequences , 2002, MULTIMEDIA '02.

[12]  W. Gerbino,et al.  Contour interpolation by vector-field combination. , 2003, Journal of vision.

[13]  Tony F. Chan,et al.  Nontexture Inpainting by Curvature-Driven Diffusions , 2001, J. Vis. Commun. Image Represent..

[14]  D. Mumford Elastica and Computer Vision , 1994 .

[15]  Simon Masnou Filtrage et désocclusion d'images par méthodes d'ensembles de niveau , 1998 .

[16]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[17]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[18]  Luis Álvarez,et al.  The Size of Objects in Natural and Artificial Images , 1999 .

[19]  Murray Eden,et al.  Fundamentals of Digital Optics , 1996 .

[20]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[21]  Patrick Pérez,et al.  Object removal by exemplar-based inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[22]  Yann Gousseau Distribution de formes dans les images naturelles , 2000 .

[23]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[24]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[25]  L. Ambrosio,et al.  A direct variational approach to a problem arising in image reconstruction , 2003 .

[26]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[27]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, IEEE Trans. Image Process..

[28]  G. Bellettini,et al.  Characterization and representation of the lower semicontinuous envelope of the elastica functional , 2004 .

[29]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[30]  David Mumford,et al.  The 2.1-D sketch , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[31]  J. Morel,et al.  Connected components of sets of finite perimeter and applications to image processing , 2001 .

[32]  Alexei Heintz,et al.  A convolution thresholding scheme for the Willmore flow , 2008 .

[33]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[34]  Maurizio Paolini,et al.  Semicontinuity and relaxation properties of a curvature depending functional in 2D , 1993 .

[35]  W. Ziemer Weakly differentiable functions , 1989 .

[36]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[37]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[38]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .