Delineating rice cropping activities from MODIS data using wavelet transform and artificial neural networks in the Lower Mekong countries

Abstract Delineating rice cropping activities is important for crop management and crop production estimation. This study used time-series MODIS data (2000, 2005, and 2010) to delineate rice cropping activities in the Lower Mekong countries. The data were processed using the wavelet transform and artificial neural networks (ANNs). The classification results assessed using the ground reference data indicated overall accuracy and Kappa coefficients of 83.1% and 0.77 for 2000, 84.7% and 0.8 for 2005, and 84.9% and 0.8 for 2010, respectively. Comparisons between MODIS-derived rice area and rice area statistics at the provincial level also reaffirmed close agreement between the two datasets ( R 2  ≥ 0.8). An examination of relative changes in harvested area revealed that from 2000 to 2010 the area of single-cropped rice increased 46.1%, while those of double- and triple-cropped rice were 20.1% and 25%, respectively.

[1]  Paul M. Mather,et al.  Assessment of the effectiveness of support vector machines for hyperspectral data , 2004, Future Gener. Comput. Syst..

[2]  K. Cassman,et al.  Rice yields decline with higher night temperature from global warming. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Dominique Bachelet,et al.  Modelling the Impact of Climate Change on Rice Production in Asia , 1995 .

[4]  Changsheng Li,et al.  Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images , 2006 .

[5]  Liu Chuang,et al.  Study on extraction of crop information using time-series MODIS data in the Chao Phraya Basin of Thailand , 2010 .

[6]  S. Lawrence Dingman,et al.  Effective sea-level rise and deltas: Causes of change and human dimension implications , 2006 .

[7]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[8]  J. Six,et al.  Object-based crop identification using multiple vegetation indices, textural features and crop phenology , 2011 .

[9]  P. Thenkabail,et al.  Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India , 2006 .

[10]  C. Timmer,et al.  A World Without Agriculture: The Structural Transformation in Historical Perspective , 2009 .

[11]  N. van Duivenbooden,et al.  Impact of Climate Change on Agricultural Production in the Sahel – Part 2. Case Study for Groundnut and Cowpea in Niger , 2002 .

[12]  R. R. De Wulf,et al.  Monitoring Sahelian floodplains using Fourier analysis of MODIS time‐series data and artificial neural networks , 2007 .

[13]  S. Dasgupta,et al.  The impact of sea level rise on developing countries: a comparative analysis , 2007 .

[14]  Cheng-Ru Chen,et al.  Monitoring of rice cropping intensity in the upper Mekong Delta, Vietnam using time-series MODIS data , 2012 .

[15]  Chi-Farn Chen,et al.  Investigating Rice Cropping Practices and Growing Areas from MODIS Data Using Empirical Mode Decomposition and Support Vector Machines , 2012 .

[16]  Mark Gahegan,et al.  Neural network architectures for the classification of temporal image sequences , 1996 .

[17]  V. Wuwongse,et al.  Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data , 2005 .

[18]  S. Flasse,et al.  Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary , 2004 .

[19]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[20]  Guang Liu,et al.  Coal mining induced land subsidence monitoring using multiband spaceborne differential interferometric synthetic aperture radar data , 2011 .

[21]  T. Sakamoto,et al.  A crop phenology detection method using time-series MODIS data , 2005 .

[22]  S. Robinson,et al.  Food Security: The Challenge of Feeding 9 Billion People , 2010, Science.

[23]  Su-Wei Huang,et al.  Mapping double-cropped irrigated rice fields in Taiwan using time-series Satellite Pour I'Observation de la Terre data , 2011 .

[24]  J. Hansen,et al.  Scientific reticence and sea level rise , 2007, physics/0703220.

[25]  D. Bachelet,et al.  Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation , 1997 .

[26]  Peter M. Atkinson,et al.  Defining an optimal size of support for remote sensing investigations , 1995, IEEE Trans. Geosci. Remote. Sens..

[27]  R. Chanda,et al.  Vulnerability Assessment of the Maize and Sorghum Crops to Climate Change in Botswana , 2003 .

[28]  J. Mustard,et al.  Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil , 2008 .

[29]  C. Samimi,et al.  Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia , 2006 .

[30]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[31]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[32]  Changsheng Li,et al.  Mapping paddy rice agriculture in southern China using multi-temporal MODIS images , 2005 .

[33]  D. Molden,et al.  Fourier analysis of historical NOAA time series data to estimate bimodal agriculture , 2007 .

[34]  Chi-Farn Chen,et al.  Wavelet filtering of time-series moderate resolution imaging spectroradiometer data for rice crop mapping using support vector machines and maximum likelihood classifier , 2011 .

[35]  I. Kanellopoulos,et al.  Land-cover discrimination in SPOT HRV imagery using an artificial neural network - a 20-class experiment , 1992 .

[36]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems , 1989 .

[37]  F. Achard,et al.  A new forest cover map of continental southeast Asia derived from SPOT-VEGETATION satellite imagery , 2004 .

[38]  M. Gilabert,et al.  Vegetation dynamics from NDVI time series analysis using the wavelet transform , 2009 .

[39]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[40]  Andrea Masini,et al.  Approaching bathymetry estimation from high resolution multispectral satellite images using a neuro-fuzzy technique , 2011 .

[41]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[42]  Chen Zhongxin,et al.  Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data , 2008 .

[43]  R. Tateishi,et al.  Spectral and temporal linear mixing model for vegetation classification , 2004 .

[44]  Samsuzana Abd Aziz,et al.  Quantifying sub-pixel signature of paddy rice field using an artificial neural network , 2009 .

[45]  P. V. Raju,et al.  Classification of wheat crop with multi-temporal images: performance of maximum likelihood and artificial neural networks , 2003 .

[46]  Robert A. Schowengerdt,et al.  A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery , 1995 .

[47]  Aaron Moody,et al.  Land-Surface Phenologies from AVHRR Using the Discrete Fourier Transform , 2001 .

[48]  Ma Jianwen,et al.  Land-use classification using ASTER data and self-organized neutral networks , 2005 .

[49]  Thomas J. Overcamp,et al.  Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution satellite imagery , 2012 .

[50]  Robin Matthews,et al.  Modelling the impacts of climate change and methane emission reductions on rice production: a review , 2003 .

[51]  Bruce C. Douglas,et al.  GLOBAL SEA RISE: A REDETERMINATION , 1997 .

[52]  Christopher Conrad,et al.  Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data , 2010, Remote. Sens..

[53]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[54]  B. Wardlow,et al.  Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains , 2007 .

[55]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[56]  José A. Martínez-Casasnovas,et al.  Mapping multi-year cropping patterns in small irrigation districts from time-series analysis of Landsat TM images , 2005 .

[57]  Jason P. Evans,et al.  Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure , 2006 .

[58]  Jun Furuya,et al.  Impact of global warming on agricultural product markets: stochastic world food model analysis , 2009 .

[59]  Sergio M. Vicente-Serrano,et al.  Complex land cover change processes in semiarid Mediterranean regions: An approach using Landsat images in northeast Spain , 2012 .

[60]  N. White,et al.  A 20th century acceleration in global sea‐level rise , 2006 .

[61]  N. T. Son,et al.  Classification of rice cropping systems by empirical mode decomposition and linear mixture model for time-series MODIS 250 m NDVI data in the Mekong Delta, Vietnam , 2011 .

[62]  M. Rosegrant,et al.  The economic consequences of crop genetic improvement programmes. , 2003 .

[63]  John R. Nuckols,et al.  An automated approach to mapping corn from Landsat imagery , 2004 .