Visual Tracking Based on the Adaptive Color Attention Tuned Sparse Generative Object Model

This paper presents a new visual tracking framework based on an adaptive color attention tuned local sparse model. The histograms of sparse coefficients of all patches in an object are pooled together according to their spatial distribution. A particle filter methodology is used as the location model to predict candidates for object verification during tracking. Since color is an important visual clue to distinguish objects from background, we calculate the color similarity between objects in the previous frames and the candidates in current frame, which is adopted as color attention to tune the local sparse representation-based appearance similarity measurement between the object template and candidates. The color similarity can be calculated efficiently with hash coded color names, which helps the tracker find more reliable objects during tracking. We use a flexible local sparse coding of the object to evaluate the degeneration degree of the appearance model, based on which we build a model updating mechanism to alleviate drifting caused by temporal varying multi-factors. Experiments on 76 challenging benchmark color sequences and the evaluation under the object tracking benchmark protocol demonstrate the superiority of the proposed tracker over the state-of-the-art methods in accuracy.

[1]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[2]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Lu Zhang,et al.  Structure Preserving Object Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Piotr Bilinski,et al.  Multiple object tracking with occlusions using HOG descriptors and multi resolution images , 2009, ICDP.

[8]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[9]  Luc Van Gool,et al.  Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[10]  Michael Felsberg,et al.  Enhanced Distribution Field Tracking Using Channel Representations , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[11]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[12]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[13]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[14]  David Zhang,et al.  Fast Tracking via Spatio-Temporal Context Learning , 2013, ArXiv.

[15]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Bin Shen,et al.  Online robust image alignment via iterative convex optimization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Fahad Shahbaz Khan,et al.  Color attributes for object detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[22]  Xiaogang Wang,et al.  Intelligent multi-camera video surveillance: A review , 2013, Pattern Recognit. Lett..

[23]  Xiaogang Wang,et al.  Joint Deep Learning for Pedestrian Detection , 2013, 2013 IEEE International Conference on Computer Vision.

[24]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Fahad Shahbaz Khan,et al.  Top-down color attention for object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[26]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[29]  Huchuan Lu,et al.  Bag of Features Tracking , 2010, 2010 20th International Conference on Pattern Recognition.

[30]  P. Kay Basic Color Terms: Their Universality and Evolution , 1969 .

[31]  Henry Medeiros,et al.  A parallel color-based particle filter for object tracking , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[32]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[33]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[35]  Luc Van Gool,et al.  Object Tracking with an Adaptive Color-Based Particle Filter , 2002, DAGM-Symposium.

[36]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Jiri Matas,et al.  Tracking by an Optimal Sequence of Linear Predictors , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[40]  Wei Wei,et al.  Incremental Multi-view Face Tracking Based on General View Manifold , 2009, ACCV.

[41]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Rynson W. H. Lau,et al.  Visual Tracking via Locality Sensitive Histograms , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[48]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[49]  Qing Wang,et al.  Transferring Visual Prior for Online Object Tracking , 2012, IEEE Transactions on Image Processing.

[50]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Robert T. Collins,et al.  An Open Source Tracking Testbed and Evaluation Web Site , 2005 .

[53]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[55]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[56]  Huchuan Lu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Online Object Tracking with Sparse Prototypes , 2022 .

[57]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[58]  Jingdong Wang,et al.  Online Robust Non-negative Dictionary Learning for Visual Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[59]  Li Bai,et al.  Minimum error bounded efficient ℓ1 tracker with occlusion detection , 2011, CVPR 2011.

[60]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[61]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  Lu Zhang,et al.  Preserving Structure in Model-Free Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.