A finite element error analysis for axisymmetric mean curvature flow

We consider the numerical approximation of axisymmetric mean curvature flow with the help of linear finite elements. In the case of a closed genus-1 surface, we derive optimal error bounds with respect to the $L^2$-- and $H^1$--norms for a fully discrete approximation. We perform convergence experiments to confirm the theoretical results, and also present numerical simulations for some genus-0 and genus-1 surfaces, including for the Angenent torus.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  G. Huisken Asymptotic-behavior for singularities of the mean-curvature flow , 1990 .

[3]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[4]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[5]  Maurizio Paolini,et al.  Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter , 1992 .

[6]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[7]  Naoyuki Ishimura,et al.  Limit shape of the cross-section of shrinking doughnuts , 1993 .

[8]  Panagiotis E. Souganidis,et al.  Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature , 1993 .

[9]  Gerhard Dziuk,et al.  CONVERGENCE OF A SEMI-DISCRETE SCHEME FOR THE CURVE SHORTENING FLOW , 1994 .

[10]  David L. Chopp,et al.  Computation of Self-Similar Solutions for Mean Curvature Flow , 1994, Exp. Math..

[11]  Gerhard Dziuk,et al.  Convergence of a finite element method for non-parametric mean curvature flow , 1995 .

[12]  K. Deckelnick,et al.  Finite element error bounds for a curve shrinking with prescribed normal contact to a fixed boundary , 1998 .

[13]  Gerhard Dziuk,et al.  Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs , 2000 .

[14]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[15]  Harald Garcke,et al.  On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..

[16]  Carlo Mantegazza,et al.  Lecture Notes on Mean Curvature Flow , 2011 .

[17]  Charles M. Elliott,et al.  On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick , 2016, 1602.07143.

[18]  Harald Garcke,et al.  Finite element methods for fourth order axisymmetric geometric evolution equations , 2018, J. Comput. Phys..

[19]  Yakov Berchenko-Kogan,et al.  The Entropy of the Angenent Torus is Approximately 1.85122 , 2018, Exp. Math..

[20]  Buyang Li,et al.  A convergent evolving finite element algorithm for mean curvature flow of closed surfaces , 2018, Numerische Mathematik.

[21]  Harald Garcke,et al.  Variational discretization of axisymmetric curvature flows , 2018, Numerische Mathematik.

[22]  Parametric finite element approximations of curvature-driven interface evolutions , 2019, Geometric Partial Differential Equations - Part I.