Block Preconditioners for Stable Mixed Nodal and Edge finite element Representations of Incompressible Resistive MHD
暂无分享,去创建一个
John N. Shadid | Roger P. Pawlowski | Eric C. Cyr | Howard C. Elman | Edward G. Phillips | H. Elman | J. Shadid | R. Pawlowski | E. Cyr | E. Phillips
[1] John N. Shadid,et al. Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG , 2016 .
[2] Scott P. MacLachlan,et al. Monolithic Multigrid Methods for Two-Dimensional Resistive Magnetohydrodynamics , 2016, SIAM J. Sci. Comput..
[3] Howard C. Elman,et al. A stochastic approach to uncertainty in the equations of MHD kinematics , 2015, J. Comput. Phys..
[4] Ting-Zhu Huang,et al. Modified block preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2013, J. Comput. Appl. Math..
[5] John N. Shadid,et al. A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD , 2014, SIAM J. Sci. Comput..
[6] Dana A. Knoll,et al. An Implicit, Nonlinear Reduced Resistive MHD Solver , 2002 .
[7] Tingzhu Huang,et al. Block triangular preconditioner for static Maxwell equations , 2011 .
[8] John N. Shadid,et al. A New Approximate Block Factorization Preconditioner for Two-Dimensional Incompressible (Reduced) Resistive MHD , 2013, SIAM J. Sci. Comput..
[9] James Demmel,et al. A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..
[10] John N. Shadid,et al. Teko: A Block Preconditioning Capability with Concrete Example Applications in Navier-Stokes and MHD , 2016, SIAM J. Sci. Comput..
[11] John N. Shadid,et al. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..
[12] Luis Chacon,et al. An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamicsa) , 2008 .
[13] Gunter Gerbeth,et al. Three-dimensional linear stability analysis of lid-driven magnetohydrodynamic cavity flow , 2003 .
[14] Stefaan Poedts,et al. Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .
[15] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[16] T. Lelièvre,et al. Mathematical Methods for the Magnetohydrodynamics of Liquid Metals , 2006 .
[17] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[18] Tamara G. Kolda,et al. An overview of the Trilinos project , 2005, TOMS.
[19] Paul Lin,et al. A parallel fully coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: Drift‐diffusion, flow/transport/reaction, resistive MHD , 2010 .
[20] John N. Shadid,et al. Aztec user`s guide. Version 1 , 1995 .
[21] Dominik Schötzau,et al. Mixed finite elements for incompressible magneto-hydrodynamics , 2003 .
[22] Jonathan J. Hu,et al. ML 5.0 Smoothed Aggregation Users's Guide , 2006 .
[23] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[24] Allen C. Robinson,et al. An Improved Algebraic Multigrid Method for Solving Maxwell's Equations , 2003, SIAM J. Sci. Comput..
[25] Rony Keppens,et al. Implicit and semi-implicit schemes: Algorithms , 1999 .
[26] L Chacón,et al. Scalable parallel implicit solvers for 3D magnetohydrodynamics , 2008 .
[27] Howard C. Elman,et al. BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS FOR THE NAVIER-STOKES EQUATIONS ∗ , 2009 .
[28] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[29] Allen C. Robinson,et al. Toward an h-Independent Algebraic Multigrid Method for Maxwell's Equations , 2006, SIAM J. Sci. Comput..
[30] Dominik Schötzau,et al. Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.
[31] Paul T. Lin,et al. Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..
[32] Jinchao Xu,et al. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..
[33] R. Keppens,et al. Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests , 1998 .
[34] Michael A. Heroux. AztecOO user guide. , 2004 .
[35] Chen Greif,et al. Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..