3D thermal-ADI: an efficient chip-level transient thermal simulator

Recent studies show that the nonuniform thermal distribution on the substrate and interconnects has impact on the circuit reliability and performance. Hence three-dimensional (3-D) thermal analysis is crucial to analyze these effects. In this paper, we present and develop an efficient 3-D transient thermal simulator based on the alternating direction implicit (ADI) method for large scale temperature estimation problems. Our simulator, 3D Thermal-ADI, not only has a linear runtime and memory requirement, but also is unconditionally stable. Detailed analysis of the 3-D nonhomogeneous cases and boundary conditions for on-chip VLSI applications are introduced and presented. Extensive experimental results show that our algorithm is not only orders of magnitude faster than the traditional thermal simulation algorithms, but is also highly accurate and memory efficient. The temperature profile of steady state can be reached in few iterations. The software is avaiable on the web [1].

[1]  G. B. Kromann,et al.  The development of component-level thermal compact models of a C4/CBGA interconnect technology: the Motorola PowerPC 603/sup TM/ and PowerPC 604/sup TM/ RISC microprocessors , 1996, 1996 Proceedings 46th Electronic Components and Technology Conference.

[2]  Anantha P. Chandrakasan,et al.  Low Power Digital CMOS Design , 1995 .

[3]  Sung-Mo Kang,et al.  Statistical estimation of average power dissipation in sequential circuits , 1997, DAC.

[4]  Robert W. Dutton,et al.  Full chip thermal simulation , 2000, Proceedings IEEE 2000 First International Symposium on Quality Electronic Design (Cat. No. PR00525).

[5]  Alberto L. Sangiovanni-Vincentelli,et al.  On thermal effects in deep sub-micron VLSI interconnects , 1999, DAC '99.

[6]  Sung-Mo Kang,et al.  ILLIADS-T: an electrothermal timing simulator for temperature-sensitive reliability diagnosis of CMOS VLSI chips , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  M. N. Özişik,et al.  Finite Difference Methods in Heat Transfer , 2017 .

[8]  Sung-Mo Kang,et al.  Interconnect thermal modeling for accurate simulation of circuittiming and reliability , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[9]  Sung-Mo Kang,et al.  Statistical estimation of average power dissipation in CMOS VLSI circuits using nonparametric techniques , 1996, Proceedings of 1996 International Symposium on Low Power Electronics and Design.

[10]  G. B. Kromann Thermal management of a C4/ceramic-ball-grid array: the Motorola PowerPC 603/sup TM/ and PowerPC 604/sup TM/ RISC microprocessors , 1996, Twelfth Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Proceedings.

[11]  Márta Rencz,et al.  Tracing the Thermal Behavior of ICs , 1998, IEEE Des. Test Comput..

[12]  J. Douglas,et al.  A general formulation of alternating direction methods , 1964 .

[13]  Charlie Chung-Ping Chen,et al.  Thermal-ADI: a linear-time chip-level dynamic thermal simulation algorithm based on alternating-direction-implicit (ADI) method , 2001, ISPD '01.

[14]  Kaustav Banerjee,et al.  Analysis and optimization of thermal issues in high-performance VLSI , 2001, ISPD '01.

[15]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[16]  G. E. Myers,et al.  Analytical Methods in Conduction Heat Transfer , 1998 .

[17]  K. Banerjee,et al.  Global (interconnect) warming , 2001 .

[18]  Kaustav Banerjee,et al.  Full chip thermal analysis of planar (2-D) and vertically integrated (3-D) high performance ICs , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[19]  Ping Yang,et al.  A Monte Carlo approach for power estimation , 1993, IEEE Trans. Very Large Scale Integr. Syst..

[20]  M. N. Özişik Boundary value problems of heat conduction , 1989 .