On a Heath–Jarrow–Morton approach for stock options

This paper aims at transferring the philosophy behind Heath–Jarrow–Morton to the modelling of call options with all strikes and maturities. Contrary to the approach by Carmona and Nadtochiy (Finance Stoch. 13:1–48, 2009) and related to the recent contribution (Finance Stoch. 16:63–104, 2012) by the same authors, the key parameterisation of our approach involves time-inhomogeneous Lévy processes instead of local volatility models. We provide necessary and sufficient conditions for absence of arbitrage. Moreover, we discuss the construction of arbitrage-free models. Specifically, we prove their existence and uniqueness given basic building blocks.

[1]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[2]  H. Bauer Wahrscheinlichkeitstheorie und Grundzuge der Maßtheorie , 1968 .

[3]  Denis Belomestny,et al.  Spectral calibration of exponential Lévy models , 2006, Finance Stochastics.

[4]  Rama Cont,et al.  Stochastic Models of Implied Volatility Surfaces , 2002 .

[5]  P. Protter Stochastic integration and differential equations , 1990 .

[6]  Arbitrage-free market models for liquid options , 2008 .

[7]  Miljenko Huzak,et al.  Characteristic Functions , 2011, International Encyclopedia of Statistical Science.

[8]  D. Heath,et al.  Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.

[9]  D. Filipović Time-inhomogeneous affine processes , 2005 .

[10]  A New Framework for Dynamic Credit Portfolio Loss Modelling , 2008 .

[11]  René Carmona,et al.  Tangent Lévy market models , 2012, Finance Stochastics.

[12]  Josef Teichmann,et al.  Term Structure Models Driven by Wiener Processes and Poisson Measures: Existence and Positivity , 2010, SIAM J. Financial Math..

[13]  R. Carmona HJM: A Unified Approach to Dynamic Models for Fixed Income, Credit and Equity Markets , 2007 .

[14]  Jan Kallsen,et al.  A Didactic Note on Affine Stochastic Volatility Models , 2006 .

[15]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[16]  J. Kallsen,et al.  σ-LOCALIZATION AND σ-MARTINGALES∗ , 2004 .

[17]  Anja Sturm,et al.  Stochastic Integration and Differential Equations. Second Edition. , 2005 .

[18]  N. H. Bingham Financial Modelling With Jump Processes , 2006 .

[19]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[20]  D. Filipović,et al.  Invariant manifolds with boundary for jump-diffusions , 2012, 1202.1076.

[21]  Jan Kallsen sigma-Localization and sigma-Martingales , 2004 .

[22]  Tangent models as a mathematical framework for dynamic calibration , 2011 .

[23]  Option valuation using the fast Fourier transform , 2000 .

[24]  Jan Kallsen,et al.  The cumulant process and Esscher's change of measure , 2002, Finance Stochastics.

[25]  M. Schweizer,et al.  TERM STRUCTURES OF IMPLIED VOLATILITIES: ABSENCE OF ARBITRAGE AND EXISTENCE RESULTS , 2007 .

[26]  R. Randles Theory of Probability and Its Applications , 2005 .

[27]  M. Taqqu,et al.  Semimartingale Modelling in Finance , 2013 .

[28]  Jean Jacod,et al.  Risk-neutral compatibility with option prices , 2010, Finance Stochastics.

[29]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[30]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[31]  J. Diestel,et al.  On vector measures , 1974 .

[32]  Mark H. A. Davis,et al.  THE RANGE OF TRADED OPTION PRICES , 2007 .

[33]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[34]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[35]  Hans Buehler,et al.  Consistent Variance Curve Models , 2006, Finance Stochastics.

[36]  René Carmona,et al.  Local volatility dynamic models , 2009, Finance Stochastics.

[37]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[38]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[39]  Johannes Wissel,et al.  Arbitrage-free market models for option prices: the multi-strike case , 2008, Finance Stochastics.

[40]  Arthur Albert,et al.  Regression and the Moore-Penrose Pseudoinverse , 2012 .