Wavelet Frames: Multiresolution Analysis and Extension Principles

After reviewing the basic ideas of frame theory from a functional analysis point of view, we discuss two approaches for the construction of (affine) wavelet frames. The theory of Frame Multiresolution Analysis as introduced in [1] is presented in a streamlined form, and the main result of the theory is completed. The interplay between redundancy and robustness in frame expansions is illustrated by a simple example. We then restate Ron and Shen’s Unitary Extension Principle and give a simple direct proof different from the original derivation in [2].

[1]  H. V. Sorensen,et al.  An overview of sigma-delta converters , 1996, IEEE Signal Process. Mag..

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  Niels Juul Munch Noise reduction in tight Weyl-Heisenberg frames , 1992, IEEE Trans. Inf. Theory.

[4]  R. Young,et al.  An introduction to non-harmonic Fourier series , 2001 .

[5]  Paul Malliavin,et al.  On fourier transforms of measures with compact support , 1962 .

[6]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[7]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[8]  A. Ron,et al.  Tight compactly supported wavelet frames of arbitrarily high smoothness , 1998 .

[9]  I. Daubechies,et al.  A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .

[10]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[11]  S. Mallat A wavelet tour of signal processing , 1998 .

[12]  J. Benedetto Harmonic Analysis and Applications , 2020 .

[13]  Peter G. Casazza,et al.  Frames of translates , 1998 .

[14]  Paul Malliavin,et al.  On the closure of characters and the zeros of entire functions , 1967 .

[15]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[16]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[17]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[18]  I. Gohberg,et al.  Basic Operator Theory , 1981 .

[19]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[20]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[21]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[22]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[23]  R. DeVore,et al.  On the construction of multivariate (pre)wavelets , 1993 .

[24]  Zuowei Shen,et al.  Compactly supported tight affine spline frames in L2(Rd) , 1998, Math. Comput..