Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting
暂无分享,去创建一个
[1] G. Golub,et al. Linear least squares solutions by householder transformations , 1965 .
[2] Per Christian Hansen,et al. Regularization Tools version 4.0 for Matlab 7.3 , 2007, Numerical Algorithms.
[3] Timothy A. Davis,et al. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization , 2011, TOMS.
[4] J. Cullum,et al. Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. I Theory , 1984 .
[5] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[6] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[7] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[8] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[9] James Demmel,et al. Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..
[10] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[11] James Demmel,et al. LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version , 2012, SIAM J. Matrix Anal. Appl..
[12] Christian H. Bischof,et al. A Parallel QR Factorization Algorithm with Controlled Local Pivoting , 1991, SIAM J. Sci. Comput..
[13] James Demmel,et al. CALU: A Communication Optimal LU Factorization Algorithm , 2011, SIAM J. Matrix Anal. Appl..
[14] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[15] R. Tarjan,et al. A Separator Theorem for Planar Graphs , 1977 .
[16] Ilse C. F. Ipsen,et al. On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..
[17] H. Walker,et al. Numerical Linear Algebra with Applications , 1994 .
[18] L. Trefethen,et al. Numerical linear algebra , 1997 .
[19] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[20] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[21] A. George,et al. A data structure for sparse QR and LU factorizations , 1988 .
[22] M. Gu,et al. Strong rank revealing LU factorizations , 2003 .
[23] G. W. Stewart,et al. Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix , 1999, Numerische Mathematik.
[24] Michael W. Mahoney. Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..
[25] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[26] James Demmel,et al. Block LU factorization , 1992 .
[27] James Demmel,et al. Minimizing Communication in Numerical Linear Algebra , 2009, SIAM J. Matrix Anal. Appl..
[28] Timothy A. Davis,et al. A column approximate minimum degree ordering algorithm , 2000, TOMS.
[29] George Karypis,et al. A Software Package for Partitioning Unstructured Graphs , Partitioning Meshes , and Computing Fill-Reducing Orderings of Sparse Matrices Version 5 . 0 , 1998 .
[30] C. Pan. On the existence and computation of rank-revealing LU factorizations , 2000 .
[31] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[32] E. Ng,et al. Separators and structure prediction in sparse orthogonal factorization , 1997 .
[33] G. W. Stewart,et al. The QLP Approximation to the Singular Value Decomposition , 1999, SIAM J. Sci. Comput..
[34] Gene H. Golub,et al. Matrix computations , 1983 .
[35] Gene H. Golub,et al. Numerical methods for solving linear least squares problems , 1965, Milestones in Matrix Computation.
[36] Per Christian Hansen,et al. Some Applications of the Rank Revealing QR Factorization , 1992, SIAM J. Sci. Comput..
[37] C. Pan,et al. Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .
[38] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2013, STOC '13.