Enhanced interface reactivity by a nanowrinkled functional layer for intermediate-temperature solid oxide fuel cells

For high-performance intermediate-temperature solid oxide fuel cells (IT-SOFCs), rational design of the interface between the electrode and electrolyte is essential, because interfacial reactivity often dominates the overall performance.

[1]  Toivo T. Kodas,et al.  Aerosol Processing of Materials , 1998 .

[2]  S. Haile,et al.  Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells , 2018 .

[3]  Lucun Guo,et al.  Investigation of La 1−x Sm x−y Sr y CoO 3−δ cathode for intermediate temperature solid oxide fuel cells , 2017 .

[4]  J. Weese A reliable and fast method for the solution of Fredhol integral equations of the first kind based on Tikhonov regularization , 1992 .

[5]  Chun-Liang Chang,et al.  Preparation and characterization of SOFC cathodes made of SSC nanofibers , 2015 .

[6]  G. Dotelli,et al.  Evaluation of Ba deficient NdBaCo2O5+δ oxide as cathode material for IT-SOFC , 2015 .

[7]  F. Prinz,et al.  Oxygen Surface Exchange at Grain Boundaries of Oxide Ion Conductors , 2012 .

[8]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[9]  T. Ryll,et al.  An investigation of the oxygen reduction reaction mechanism of La0.6Sr0.4Co0.2Fe0.8O3 using patterned thin films , 2012 .

[10]  J. Bassat,et al.  An innovative architectural design to enhance the electrochemical performance of La2NiO4+δ cathodes for solid oxide fuel cell applications , 2016 .

[11]  Yan Chen,et al.  Fast oxygen exchange and diffusion kinetics of grain boundaries in Sr-doped LaMnO3 thin films. , 2015, Physical chemistry chemical physics : PCCP.

[12]  Chih-Ming Ho,et al.  Minimal size of coffee ring structure. , 2010, The journal of physical chemistry. B.

[13]  Wonbeak Lee,et al.  One-step fabrication of composite nanofibers for solid oxide fuel cell electrodes , 2019, Journal of Power Sources.

[14]  Wonbeak Lee,et al.  Nano-film coated cathode functional layers towards high performance solid oxide fuel cells , 2018 .

[15]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[16]  E. Djurado,et al.  Electrochemical investigation of oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes deposited by Electrostatic Spray Deposition , 2012 .

[17]  E. R. Losilla,et al.  An easy and innovative method based on spray-pyrolysis deposition to obtain high efficiency cathodes for Solid Oxide Fuel Cells , 2016 .

[18]  J.‐W. Kim,et al.  Direct and dry micro-patterning of nano-particles by electrospray deposition through a micro-stencil mask , 2009 .

[19]  Hyoungchul Kim,et al.  Tailoring ceramic membrane structures of solid oxide fuel cells via polymer-assisted electrospray deposition , 2017 .

[20]  Meilin Liu,et al.  A Novel Composite Cathode for Low‐Temperature SOFCs Based on Oxide Proton Conductors , 2008 .

[21]  D. Byun,et al.  Controlling the Diameter of Electrospun Yttria‐Stabilized Zirconia Nanofibers , 2016 .

[22]  Wonbeak Lee,et al.  Nanofiber-based composite cathodes for intermediate temperature solid oxide fuel cells , 2017 .

[23]  Zhe Zhao,et al.  Investigation of oxygen reduction reaction kinetics on Sm0.5Sr0.5CoO3−δ cathode supported on Ce0.85Sm0.075Nd0.075O2−δ electrolyte , 2011 .

[24]  Xiaomin Zhang,et al.  Insight into the oxygen reduction reaction on the LSM|GDC interface of solid oxide fuel cells through impedance spectroscopy analysis , 2016 .

[25]  Zhe Zhao,et al.  Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode. , 2015, Nano letters.

[26]  Chenghao Yang,et al.  A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells , 2016 .

[27]  M. Koyama,et al.  Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode , 2000 .

[28]  Y. Takeda,et al.  Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia , 1987 .

[29]  D. Lamas,et al.  High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. , 2007, Journal of the American Chemical Society.

[30]  Ji-won Son,et al.  Suppression of Cation Segregation in (La,Sr)CoO3-δ by Elastic Energy Minimization. , 2018, ACS applied materials & interfaces.

[31]  G. Luo,et al.  Oxygen exchange kinetics on a highly oriented La0.5Sr0.5CoO3−δ thin film prepared by pulsed-laser deposition , 2001 .

[32]  Suppression of the coffee-ring effect by sugar-assisted depinning of contact line , 2018, Scientific Reports.

[33]  Y. Shul,et al.  Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C , 2014, Nature Communications.

[34]  N. Menzler,et al.  An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode , 2012 .

[35]  T. Terai,et al.  LSCF―Ag Cermet Cathode for Intermediate Temperature Solid Oxide Fuel Cells , 2009 .

[36]  P. Pikhitsa,et al.  Three-dimensional assembly of nanoparticles from charged aerosols. , 2011, Nano letters.

[37]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[38]  A. Hammouche,et al.  Impedance spectroscopy analysis of La1 − xSritxMnO3-yttria-stabilized zirconia electrode kinetics , 1995 .

[39]  Wonbeak Lee,et al.  Effects of Grain Boundaries at the Electrolyte/Cathode Interfaces on Oxygen Reduction Reaction Kinetics of Solid Oxide Fuel Cells , 2017 .

[40]  Yaohui Zhang,et al.  Evaluation of (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3−δ cathode for intermediate temperature solid oxide fuel cell , 2012 .

[41]  R. Gemmen,et al.  Nanofiber scaffold for cathode of solid oxide fuel cell , 2011 .

[42]  Yen‐Pei Fu,et al.  Chemical bulk diffusion coefficient of Sm0.5Sr0.5CoO3−δ cathode for solid oxide fuel cells , 2013 .

[43]  F. Prinz,et al.  Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells , 2015 .

[44]  Bilge Yildiz,et al.  Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. , 2013, Journal of the American Chemical Society.

[45]  Changgu Lee,et al.  Designing Carbon/Oxygen Ratios of Graphene Oxide Membranes for Proton Exchange Membrane Fuel Cells , 2019, Journal of Nanomaterials.

[46]  Y. Xiong,et al.  Nanofiber-structured SSC–GDC composite cathodes for a LSGM electrolyte based IT-SOFCs , 2015 .