The Elliptic Law

We show that, under some general assumptions on the entries of a random complex $n \times n$ matrix $X_n$, the empirical spectral distribution of $\frac{1}{\sqrt{n}} X_n$ converges to the uniform law of an ellipsoid as $n$ tends to infinity. This generalizes the well-known circular law in random matrix theory.

[1]  K. Johansson From Gumbel to Tracy-Widom , 2005, math/0510181.

[2]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[3]  J. Lindeberg Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .

[4]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[5]  C. Bordenave,et al.  Around the circular law , 2011, 1109.3343.

[6]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[7]  Hoi H. Nguyen,et al.  Inverse Littlewood-Offord problems and The Singularity of Random Symmetric Matrices , 2011, 1101.3074.

[8]  Kevin P. Costello,et al.  Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.

[9]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .

[10]  A. Naumov Elliptic law for real random matrices , 2012, 1201.1639.

[11]  G. Halász Estimates for the concentration function of combinatorial number theory and probability , 1977 .

[12]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[13]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[14]  T. Tao,et al.  On the singularity probability of random Bernoulli matrices , 2005, math/0501313.

[15]  Strong Elliptic Law , 1997 .

[16]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[17]  Terence Tao,et al.  John-type theorems for generalized arithmetic progressions and iterated sumsets , 2006 .

[18]  L. Pastur,et al.  Eigenvalue Distribution of Large Random Matrices , 2011 .

[19]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.

[20]  The Strong Elliptical Galactic Law. Sand Clock density. Twenty years later. Part II , 2006 .

[21]  D. Kleitman On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .

[22]  Alexander Tikhomirov,et al.  The circular law for random matrices , 2007, 0709.3995.

[23]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[24]  The Strong Elliptic Law. Twenty years later. Part I , 2006 .

[25]  Z. Bai,et al.  METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .

[26]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[27]  Terence Tao,et al.  Freiman's theorem for solvable groups , 2009, Contributions Discret. Math..

[28]  The Strong Circular Law. Twenty years later. Part II , 2004 .

[29]  Van Vu,et al.  Optimal Inverse Littlewood-Offord theorems , 2010, 1004.3967.

[30]  T. Tao,et al.  From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.

[31]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[32]  Hoi H. Nguyen,et al.  On the least singular value of random symmetric matrices , 2011, 1102.1476.

[33]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[34]  The Elliptic Law: ten years later II , 1995 .

[35]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[36]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[37]  Hoi H. Nguyen,et al.  A continuous variant of the inverse Littlewood-Offord problem for quadratic forms , 2011, Contributions Discret. Math..

[38]  S. Chatterjee A generalization of the Lindeberg principle , 2005, math/0508519.

[39]  Roman Vershynin,et al.  Invertibility of symmetric random matrices , 2011, Random Struct. Algorithms.

[40]  L. Erdős Universality of Wigner random matrices: a survey of recent results , 2010, 1004.0861.

[41]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[42]  COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW , 2008 .

[43]  Tae-Won Chun,et al.  A novel method of common-mode voltage reduction in matrix converters , 2012 .

[44]  Madan Lal Mehta,et al.  Random Matrices and the Statistical Theory of Energy Levels , 2014 .

[45]  Wang Zhou,et al.  Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..

[46]  Boris A Khoruzhenko,et al.  The Thouless formula for random non-Hermitian Jacobi matrices , 2003 .

[47]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[48]  Terence Tao,et al.  Smooth analysis of the condition number and the least singular value , 2008, Math. Comput..