The Elliptic Law
暂无分享,去创建一个
[1] K. Johansson. From Gumbel to Tracy-Widom , 2005, math/0510181.
[2] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[3] J. Lindeberg. Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .
[4] T. Tao,et al. RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.
[5] C. Bordenave,et al. Around the circular law , 2011, 1109.3343.
[6] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[7] Hoi H. Nguyen,et al. Inverse Littlewood-Offord problems and The Singularity of Random Symmetric Matrices , 2011, 1101.3074.
[8] Kevin P. Costello,et al. Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.
[9] A. Guionnet,et al. CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .
[10] A. Naumov. Elliptic law for real random matrices , 2012, 1201.1639.
[11] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .
[12] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[13] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.
[14] T. Tao,et al. On the singularity probability of random Bernoulli matrices , 2005, math/0501313.
[15] Strong Elliptic Law , 1997 .
[16] J. Baik,et al. The Oxford Handbook of Random Matrix Theory , 2011 .
[17] Terence Tao,et al. John-type theorems for generalized arithmetic progressions and iterated sumsets , 2006 .
[18] L. Pastur,et al. Eigenvalue Distribution of Large Random Matrices , 2011 .
[19] T. Tao,et al. Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.
[20] The Strong Elliptical Galactic Law. Sand Clock density. Twenty years later. Part II , 2006 .
[21] D. Kleitman. On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .
[22] Alexander Tikhomirov,et al. The circular law for random matrices , 2007, 0709.3995.
[23] T. Tao,et al. Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.
[24] The Strong Elliptic Law. Twenty years later. Part I , 2006 .
[25] Z. Bai,et al. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .
[26] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[27] Terence Tao,et al. Freiman's theorem for solvable groups , 2009, Contributions Discret. Math..
[28] The Strong Circular Law. Twenty years later. Part II , 2004 .
[29] Van Vu,et al. Optimal Inverse Littlewood-Offord theorems , 2010, 1004.3967.
[30] T. Tao,et al. From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.
[31] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[32] Hoi H. Nguyen,et al. On the least singular value of random symmetric matrices , 2011, 1102.1476.
[33] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[34] The Elliptic Law: ten years later II , 1995 .
[35] E. Wigner. On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .
[36] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .
[37] Hoi H. Nguyen,et al. A continuous variant of the inverse Littlewood-Offord problem for quadratic forms , 2011, Contributions Discret. Math..
[38] S. Chatterjee. A generalization of the Lindeberg principle , 2005, math/0508519.
[39] Roman Vershynin,et al. Invertibility of symmetric random matrices , 2011, Random Struct. Algorithms.
[40] L. Erdős. Universality of Wigner random matrices: a survey of recent results , 2010, 1004.0861.
[41] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[42] COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW , 2008 .
[43] Tae-Won Chun,et al. A novel method of common-mode voltage reduction in matrix converters , 2012 .
[44] Madan Lal Mehta,et al. Random Matrices and the Statistical Theory of Energy Levels , 2014 .
[45] Wang Zhou,et al. Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..
[46] Boris A Khoruzhenko,et al. The Thouless formula for random non-Hermitian Jacobi matrices , 2003 .
[47] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[48] Terence Tao,et al. Smooth analysis of the condition number and the least singular value , 2008, Math. Comput..