Corrigendum: Staircase Quantum Dots Configuration in Nanowires for Optimized Thermoelectric Power

Scientific Reports 6: Article number: 31974; published online: 23 August 2016; updated: 22 September 2016 In the original version of this Article, there were typographical errors in Affiliation 1 which was incorrectly given as ‘Multidisciplinary Nanotechnology Centre, College of Engineering, SwanseaUniversity, Bay Campus, Swansea, SA1 8QQ, UK.

[1]  F Hartmann,et al.  Voltage fluctuation to current converter with Coulomb-coupled quantum dots. , 2015, Physical review letters.

[2]  Y. Imry,et al.  Hopping thermoelectric transport in finite systems: Boundary effects , 2013, 1301.5411.

[3]  F. Boeuf,et al.  Cavity-Polariton Effects in II-VI Microcavities , 1999 .

[4]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[5]  R. Street Electronic Processes in Noncrystalline Materials , 1973 .

[6]  A. Jordan,et al.  Three-terminal heat engine and refrigerator based on superlattices , 2015, 1508.03060.

[7]  Hal Edwards,et al.  A quantum‐dot refrigerator , 1993 .

[8]  A. Jordan,et al.  Correlations of heat and charge currents in quantum-dot thermoelectric engines , 2013, 1307.0598.

[9]  C. Gorini,et al.  Gate-modulated thermopower of disordered nanowires: II. Variable-range hopping regime , 2014, 1403.7475.

[10]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[11]  Y. Imry,et al.  Phonon thermoelectric transistors and rectifiers , 2015, 1505.01880.

[12]  R. J. Bell Boundary effects , 1983, Nature.

[13]  Markus Buttiker,et al.  Optimal energy quanta to current conversion , 2010, 1008.3528.

[14]  D. Ritchie,et al.  Electronic refrigeration of a two-dimensional electron gas. , 2009, Physical review letters.

[15]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[17]  Y. Imry,et al.  Linear and nonlinear mesoscopic thermoelectric transport with coupling with heat baths , 2016, 1602.01655.

[18]  Lee,et al.  New aspects of variable-range hopping in finite one-dimensional wires. , 1986, Physical review. B, Condensed matter.

[19]  Jian‐Hua Jiang Enhancing efficiency and power of quantum-dots resonant tunneling thermoelectrics in three-terminal geometry by cooperative effects , 2014, 1507.00826.

[20]  Y. Imry,et al.  Thermoelectric three-terminal hopping transport through one-dimensional nanosystems , 2012, 1201.4031.

[21]  Markus Buttiker,et al.  Powerful and efficient energy harvester with resonant-tunneling quantum dots , 2013, 1302.3366.

[22]  D. A. Ritchie,et al.  Harvesting dissipated energy with a mesoscopic ratchet , 2015, Nature Communications.

[23]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[24]  Steffen Bohni Nielsen,et al.  Improving Performance? , 2008 .

[25]  O. Madelung Semiconductors: Data Handbook , 2003 .

[26]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .

[27]  Rafael Sánchez,et al.  Three-terminal energy harvester with coupled quantum dots. , 2015, Nature nanotechnology.

[28]  Y. Imry,et al.  Three-terminal semiconductor junction thermoelectric devices: improving performance , 2013, 1305.4612.

[29]  Markus Buttiker,et al.  Powerful energy harvester based on resonant-tunneling quantum wells , 2013, 1309.7907.

[30]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.