Probably Half True: Probabilistic Satisfiability over Łukasiewicz Infinitely-Valued Logic

We study probabilistic-logic reasoning in a context that allows for “partial truths”, focusing on computational and algorithmic properties of non-classical Łukasiewicz Infinitely-valued Probabilistic Logic. In particular, we study the satisfiability of joint probabilistic assignments, which we call LIPSAT. Although the search space is initially infinite, we provide linear algebraic methods that guarantee polynomial size witnesses, placing LIPSAT complexity in the NP-complete class. An exact satisfiability decision algorithm is presented which employs, as a subroutine, the decision problem for Łukasiewicz Infinitely-valued (non probabilistic) logic, that is also an NP-complete problem. We develop implementations of the algorithms described and discuss the empirical presence of a phase transition behavior for those implementations.

[1]  Daniele Mundici,et al.  Satisfiability in Many-Valued Sentential Logic is NP-Complete , 1987, Theor. Comput. Sci..

[2]  Marcelo Finger,et al.  Probabilistic satisfiability: algorithms with the presence and absence of a phase transition , 2015, Annals of Mathematics and Artificial Intelligence.

[3]  Daniele Mundici,et al.  A constructive proof of McNaughton's theorem in infinite-valued logic , 1994, Journal of Symbolic Logic (JSL).

[4]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[5]  Daniele Mundici,et al.  Bookmaking over infinite-valued events , 2006, Int. J. Approx. Reason..

[6]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[7]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[8]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[9]  Bruno Dutertre,et al.  Yices 2.2 , 2014, CAV.

[10]  Reiner Hähnle,et al.  Towards an Efficient Tableau Proof Procedure for Multiple-Valued Logics , 1990, CSL.

[11]  Pierre Hansen,et al.  Algorithms for the maximum satisfiability problem , 1987, Computing.

[12]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[13]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[14]  Robert McNaughton,et al.  A Theorem About Infinite-Valued Sentential Logic , 1951, J. Symb. Log..

[15]  Christos H. Papadimitriou,et al.  A linear programming approach to reasoning about probabilities , 1990, Annals of Mathematics and Artificial Intelligence.

[16]  Felip Manyà,et al.  Finding Hard Instances of Satisfiability in Lukasiewicz Logics , 2015, 2015 IEEE International Symposium on Multiple-Valued Logic.

[17]  Tommaso Flaminio,et al.  The coherence of Lukasiewicz assessments is NP-complete , 2010, Int. J. Approx. Reason..

[18]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[19]  Christos H. Papadimitriou,et al.  Probabilistic satisfiability , 1988, J. Complex..

[20]  Toby Walsh,et al.  The SAT Phase Transition , 1994, ECAI.

[21]  B. D. Finetti,et al.  Theory of Probability: A Critical Introductory Treatment , 2017 .

[22]  Marcelo Finger,et al.  Probabilistic Satisfiability: Logic-Based Algorithms and Phase Transition , 2011, IJCAI.

[23]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[24]  B. Finetti Sul significato soggettivo della probabilità , 1931 .