A General Framework for Stochastic Traveling Waves and Patterns, with Application to Neural Field Equations

In this paper we present a general framework in which to rigorously study the effect of spatio-temporal noise on traveling waves and stationary patterns. In particular, the framework can incorporate versions of the stochastic neural field equation that may exhibit traveling fronts, pulses, or stationary patterns. To do this, we first formulate a local SDE that describes the position of the stochastic wave up until a discontinuity time, at which point the position of the wave may jump. We then study the local stability of this stochastic front, obtaining a result that recovers a well-known deterministic result in the small-noise limit. We finish with a study of the long-time behavior of the stochastic wave.

[1]  James Rankin,et al.  Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis , 2013, Journal of mathematical biology.

[2]  Tadahisa Funaki,et al.  The scaling limit for a stochastic PDE and the separation of phases , 1995 .

[3]  P. Maini,et al.  Spatial pattern formation in chemical and biological systems , 1997 .

[4]  Xinfu Chen,et al.  Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations , 1997, Advances in Differential Equations.

[5]  P. Bressloff Spatiotemporal dynamics of continuum neural fields , 2012 .

[6]  Dirk Blömker Amplitude Equations for Stochastic Partial Differential Equations , 2007, Interdisciplinary Mathematical Sciences.

[7]  Eva Lang,et al.  A Multiscale Analysis of Traveling Waves in Stochastic Neural Fields , 2015, SIAM J. Appl. Dyn. Syst..

[8]  Wilhelm Stannat,et al.  Front Propagation in Stochastic Neural Fields: A Rigorous Mathematical Framework , 2014, SIAM J. Appl. Dyn. Syst..

[9]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[10]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[11]  Björn Sandstede,et al.  Evans Functions and Nonlinear Stability of Traveling Waves in Neuronal Network Models , 2007, Int. J. Bifurc. Chaos.

[12]  A. Kyprianou,et al.  Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: one sided travelling-waves , 2006 .

[13]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[14]  C. Eugene Wayne,et al.  Existence and Stability of Traveling Pulses in a Continuous Neuronal Network , 2005, SIAM J. Appl. Dyn. Syst..

[15]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[16]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[17]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[18]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[19]  Paul C. Bressloff,et al.  Nonlinear Langevin Equations for Wandering Patterns in Stochastic Neural Fields , 2015, SIAM J. Appl. Dyn. Syst..

[20]  G. J. Lord,et al.  Computing Stochastic Traveling Waves , 2012, SIAM J. Sci. Comput..

[21]  Stephen Coombes,et al.  Evans Functions for Integral Neural Field Equations with Heaviside Firing Rate Function , 2004, SIAM J. Appl. Dyn. Syst..

[22]  Linghai Zhang,et al.  On stability of traveling wave solutions in synaptically coupled neuronal networks , 2003, Differential and Integral Equations.

[23]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[24]  Charles R. Doering,et al.  Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality , 2003 .

[25]  Paul C. Bressloff,et al.  Front Propagation in Stochastic Neural Fields , 2012, SIAM J. Appl. Dyn. Syst..

[26]  Thomas Wennekers,et al.  Pattern formation in intracortical neuronal fields , 2003, Network.

[27]  Stability of travelling waves in stochastic bistable reaction-diffusion equations , 2014, 1404.3853.

[28]  P. Bates,et al.  Traveling Waves in a Convolution Model for Phase Transitions , 1997 .

[29]  J. Marsden,et al.  Reduction and reconstruction for self-similar dynamical systems , 2002 .

[30]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[31]  Errico Presutti,et al.  Brownian fluctuations of the interface in the D=1 Ginzburg-Landau equation with noise , 1995 .

[32]  C. Bowden,et al.  Waves , 2011 .

[33]  G. Ermentrout,et al.  Existence and uniqueness of travelling waves for a neural network , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[34]  O. Faugeras,et al.  Stochastic neural field equations: a rigorous footing , 2013, Journal of mathematical biology.

[35]  Arnd Scheel,et al.  Existence of pulses in excitable media with nonlocal coupling , 2013, 1311.6508.

[36]  Vitaly Volpert,et al.  Traveling Wave Solutions of Parabolic Systems , 1994 .

[37]  Bard Ermentrout,et al.  Spatially Structured Activity in Synaptically Coupled Neuronal Networks: I. Traveling Fronts and Pulses , 2001, SIAM J. Appl. Math..

[38]  Y. Gliklikh Stochastic Analysis on Manifolds , 2011 .