Volcanic degassing of argon and helium and the history of crustal production on Venus

We develop a new methodology linking 40Ar and 4He degassing to crustal production on Venus in order to examine two different scenarios for the history of magmatism on that planet, both consistent with recent analyses of the cratering record of the Venus surface. The first scenario includes episodic global resurfacing events and modest levels of magmatism between such events, while the second scenario invokes different rates of steady magmatism before and after a given transition time. Our degassing models include distinct mantle, crustal, and atmospheric reservoirs. Diffusive transfer of 40Ar and 4He from the crust to the atmosphere is also taken into account. The 40Ar abundance in the present atmosphere reflects the integrated degassing and magmatism over most of planetary history. In contrast, helium escapes from the planetary atmosphere within a characteristic residence time of 200 Myr to 1.8 Gyr, so the present atmospheric 4He abundance is relevant to the volume of magma produced during the last global resurfacing event and the rate of the magmatism subsequent to that event under the first scenario and to the two steady rates of magmatism and the transition time under the second. Unfortunately, large uncertainties in mineral partition coefficients and in the Ar and He mixing ratios in the lower atmosphere of Venus presently prevent the use of our degassing models to distinguish among crustal formation history models. We therefore explore the influence of these uncertain parameters on the degassing history in order to identify those new laboratory and in situ measurements that will most strongly constrain crustal production history. As an important step in the development of the Ar degassing model, the K budget in the bulk silicate fraction of Venus is re-examined on the basis of Venera and Vega γ ray measurements of K, U, and Th concentrations in surface materials. For U and Th concentrations in the bulk silicate planet of 18–29 ppb and 64–94 ppb, respectively, the degree of mantle melting that formed the surface materials at the Venera 9 and 10 and Vega 1 and 2 landing sites is calculated to lie between 0.02 and 0.16. The degree of melting calculated for materials at each landing site is combined with measurements of surface K concentration to estimate the K concentration in the bulk silicate portion of the planet at between 100 and 300 ppm. These results suggest that Venus and Earth have similar heat production.

[1]  Y. Amelin,et al.  Juvenile helium in ancient rocks: II. U-He, K-Ar, Sm-Nd, and Rb-Sr systematics in the Monche Pluton. ratios frozen in uranium-free ultramafic rocks , 1992 .

[2]  M. Drake,et al.  Solubility and partitioning of Ne, Ar, Kr and Xe in minerals and synthetic basaltic melts , 1992 .

[3]  I. Tolstikhin,et al.  Geodynamics, magmatism, and degassing of the Earth , 1990 .

[4]  D. Hunten,et al.  The upper atmosphere of Venus during morning conditions , 1980 .

[5]  D. Turcotte,et al.  Tectonic implications of radiogenic noble gases in planetary atmospheres , 1988 .

[6]  B. Marty,et al.  Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid-ocean ridge basalt , 1993 .

[7]  G. Schubert,et al.  Subsolidus convective cooling histories of terrestrial planets , 1979 .

[8]  C. Weitz,et al.  Magellan observations of the Venera and Vega landing site regions , 1993 .

[9]  R. Gijbels,et al.  Trace element abundances and mineral/melt distribution coefficients in phonolites from the Laacher See volcano (Germany) , 1983 .

[10]  M. McElroy,et al.  Helium on Venus: Implications for Uranium and Thorium , 1983, Science.

[11]  Catherine M. Weitz,et al.  Geology of the Venera 8 landing site region from Magellan data: Morphological and geochemical considerations , 1992 .

[12]  T. Matsui,et al.  Evolution of seafloor spreading rate based on 40Ar degassing history , 1993 .

[13]  A. Hofmann,et al.  Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth , 1992 .

[14]  S. Hart,et al.  Experimental cpx/melt partitioning of 24 trace elements , 1993 .

[15]  J. Crisp Rates of magma emplacement and volcanic output , 1984 .

[16]  G. Schubert,et al.  Whole planet cooling and the radiogenic heat source contents of the Earth and Moon , 1980 .

[17]  D. E. Fisher,et al.  Evidence from rare gases for magma-chamber degassing of highly evolved mid-ocean-ridge basalt , 1990, Nature.

[18]  S. Solomon,et al.  Global Variations in the Geoid/Topography Admittance of Venus , 1994, Science.

[19]  G. Schubert,et al.  Two‐layer mantle convection and the depletion of radioactive elements in the lower mantle , 1981 .

[20]  M. Prather,et al.  Loss of Oxygen from Venus , 1982 .

[21]  George W. Wetherill,et al.  Accumulation of a swarm of small planetesimals , 1989 .

[22]  R. Herrick Resurfacing history of Venus , 1994 .

[23]  R. Yund,et al.  Oxygen diffusion in a fine‐grained quartz aggregate with wetted and nonwetted microstructures , 1992 .

[24]  K. Foland,et al.  Excess argon in amphiboles from fluid interaction and short intrusion interval at the Epizonal Marangudzi Complex, Zimbabwe , 1989 .

[25]  Robert G. Strom,et al.  The global resurfacing of Venus , 1993 .

[26]  Ronald G. Prinn,et al.  COMPOSITION OF THE VENUS ATMOSPHERE , 2022, Venus.

[27]  A. Basilevsky,et al.  Density and morphology of impact craters on Tessera Terrain, Venus , 1993 .

[28]  P. Ford,et al.  Features on Venus generated by plate boundary processes , 1992 .

[29]  G. Schubert,et al.  Modes of mantle convection and the removal of heat from the Earth's interior , 1982 .

[30]  P. Zeitler Argon diffusion in partially outgassed alkali feldspars: Insights from 40Ar39Ar analysis , 1988 .

[31]  M. Ozima,et al.  Primitive Helium in Diamonds , 1983, Science.

[32]  D. Hunten The Escape of Light Gases from Planetary Atmospheres , 1973 .

[33]  T. Onstott,et al.  Initial argon in amphiboles from the Chugach Mountains, southern Alaska , 1989 .

[34]  Robert O. Pepin,et al.  On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles , 1991 .

[35]  G. Dreibus,et al.  SUPPLY AND LOSS OF VOLATILE CONSTITUENTS DURING THE ACCRETION OF TERRESTRIAL PLANETS , 1989, Origin and Evolution of Planetary and Satellite Atmospheres.

[36]  JOHN S. Lewis,et al.  The Composition and Early Evolution of Earth , 1993 .

[37]  M. Jackson,et al.  On the sensitivity of parameterized convection to the rate of decay of internal heat sources , 1984 .

[38]  R. Clayton,et al.  Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .

[39]  R. Grimm The Deep Structure of Venusian Plateau Highlands , 1994 .

[40]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[41]  W. Rammensee,et al.  Solubility and diffusion of noble gases in vitreous albite , 1992 .

[42]  P. Beattie The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies , 1993 .

[43]  C. Jaupart,et al.  The heat flow through oceanic and continental crust and the heat loss of the Earth , 1980 .

[44]  A. Konopliv,et al.  Venus Spherical Harmonic Gravity Model to Degree and Order 60 , 1994 .

[45]  T. Grove,et al.  Primary magmas of mid‐ocean ridge basalts 1. Experiments and methods , 1992 .

[46]  Y. Hamano,et al.  Earth-atmosphere evolution model based on Ar isotopic data , 1978 .

[47]  Donald L. Turcotte,et al.  On the thermal evolution of the earth , 1980 .

[48]  T. Grove,et al.  Corrections and further discussion of the primary magmas of mid‐ocean ridge basalts, 1 and 2 , 1993 .

[49]  V. P. Kharyukova,et al.  Venus rock composition at the Vega 2 Landing Site , 1986 .

[50]  H. Hiyagon Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid-ocean ridge basalt — Comments , 1994 .

[51]  V. Volkov,et al.  The modeling of Venus' degassing in terms of K-Ar system , 1993 .

[52]  R. Freer Diffusion in silicate minerals and glasses: A data digest and guide to the literature , 1981 .

[53]  Jeffrey S. Kargel,et al.  The Volcanology of Venera and VEGA Landing Sites and the Geochemistry of Venus , 1993 .

[54]  R. Joesten Grain-Boundary Diffusion Kinetics in Silicate and Oxide Minerals , 1991 .

[55]  Yu. A. Surkov,et al.  Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. , 1987 .

[56]  K. Zahnle,et al.  The evolution of solar ultraviolet luminosity , 1982 .

[57]  M. McElroy,et al.  Composition of the Venus lower atmosphere from the Pioneer Venus Mass Spectrometer , 1980 .

[58]  S. Capedri,et al.  Partition coefficients of uranium for some rock-forming minerals , 1975 .

[59]  J. Head,et al.  Fundamental Issues in the Geology and Geophysics of Venus , 1991, Science.

[60]  R. White,et al.  Mantle plumes and flood basalts , 1995 .

[61]  J. Head,et al.  Mechanisms for lithospheric heat transport on Venus: Implications for tectonic style and volcanism , 1982 .

[62]  D. Hunten,et al.  Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus , 1980 .

[63]  K. Foland,et al.  The Mont Saint Hilaire plutonic complex: occurrence of excess 40Ar and short intrusion history , 1986 .

[64]  H. Yurimoto,et al.  Anion and cation partitioning between three pyroxenes, chrome spinel phenocrysts and the host boninite magma: an ion microprobe study , 1987 .

[65]  T. Staudacher,et al.  Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle , 1987 .

[66]  R. Phillips,et al.  Implications of a Global Survey of Venusian Impact Craters , 1994 .

[67]  D. Hunten Atmospheric Evolution of the Terrestrial Planets , 1993, Science.

[68]  R. Clayton,et al.  Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils , 1995 .

[69]  J. Head,et al.  Venus resurfacing rates: Constraints provided by 3‐D Monte Carlo simulations , 1993 .

[70]  G. Wetherill,et al.  Provenance of the terrestrial planets. , 1994, Geochimica et cosmochimica acta.

[71]  T. Grove,et al.  Primary magmas of mid-ocean ridge basalts 2. Applications , 1992 .

[72]  H. Hiyagon,et al.  Partition of noble gases between olivine and basalt melt , 1986 .

[73]  P. Zeitler Argon diffusion in partially outgassed alkali feldspars: Insights from analysis , 1987 .

[74]  P. Beattie Uranium–thorium disequilibria and partitioning on melting of garnet peridotite , 1993, Nature.

[75]  D. L. Herrick,et al.  Episodic large-scale overturn of two-layer mantles in terrestrial planets , 1994 .

[76]  V. L. Barsukov,et al.  New data on the composition, structure, and properties of Venus rock obtained by Venera 13 and Venera 14 , 1984 .

[77]  R. Prinn,et al.  Estimation of the rate of volcanism on Venus from reaction rate measurements , 1989, Nature.

[78]  Y. Nakamura,et al.  Light noble gases in basalt glasses from Mariana Trough , 1986 .

[79]  P. C. Hess,et al.  Chemical dieferentiation of a convecting planetary interior: Consequences for a one plate planet such as Venus , 1992 .

[80]  D. Hilton,et al.  Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: Evidence of crust/mantle interactions in a back-arc basin , 1993 .

[81]  D. E. Fisher Rare gas abundances in MORB , 1986 .

[82]  R. Phillips,et al.  TECTONIC AND MAGMATIC EVOLUTION OF VENUS , 1994 .

[83]  S. Solomon,et al.  Impact Crater Densities on Volcanoes and Coronae on Venus: Implications for Volcanic Resurfacing , 1994, Science.

[84]  O. Eldholm,et al.  Large igneous provinces: crustal structure, dimensions, and external consequences , 1994 .

[85]  C. Langmuir,et al.  The meaning of mean F : clarifying the mean extent of melting at ocean ridges , 1995 .

[86]  J. Pollack,et al.  Noble gases in planetary atmospheres: Implications for the origin and evolution of atmospheres☆ , 1982 .

[87]  H. Westrich,et al.  Degassing of rhyolitic magma during ascent and emplacement , 1988 .

[88]  M. Drake,et al.  Solubility and partitioning of Ar in anorthite, diopside, forsterite, spinel, and synthetic basaltic liquids , 1990 .

[89]  James W. Head,et al.  Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data , 1992 .

[90]  Youxue Zhang,et al.  Noble gas constraints on the evolution of the Earth's atmosphere , 1989 .

[91]  J. Suppe,et al.  Mean age of rifting and volcanism on Venus deduced from impact crater densities , 1994, Nature.

[92]  D. Hunten,et al.  Hydrogen Loss from the Terrestrial Planets , 1976 .

[93]  D. Hunten,et al.  ESCAPE OF ATMOSPHERES AND LOSS OF WATER , 1989, Origin and Evolution of Planetary and Satellite Atmospheres.

[94]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[95]  A. Cameron Elemental and Nuclidic Abundances in the Solar System , 1982 .

[96]  G. Wasserburg,et al.  Thorium-Uranium Fractionation by Garnet: Evidence for a Deep Source and Rapid Rise of Oceanic Basalts , 1993, Science.

[97]  Maribeth Price,et al.  Dating volcanism and rifting on Venus using impact crater , 1996 .

[98]  G. Davies Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth , 1980 .

[99]  A. G. W. Cameron,et al.  The origin of the moon and the single-impact hypothesis III. , 1991 .

[100]  D. Yuen,et al.  The effects of multiple phase transitions on Venusian mantle convection , 1992 .

[101]  S. Sasaki,et al.  Origin of isotopic fractionation of terrestrial Xe: hydrodynamic fractionation during escape of the primordial H2He atmosphere , 1988 .

[102]  Raymond E. Arvidson,et al.  Impact craters and Venus resurfacing history , 1992 .

[103]  E. Takahashi Melting of a dry peridotite KLB‐1 up to 14 GPa: Implications on the Origin of peridotitic upper mantle , 1986 .

[104]  Donald L. Turcotte,et al.  An episodic hypothesis for Venusian tectonics , 1993 .

[105]  G. Mcgill Venus tectonics - Another earth or another Mars , 1979 .

[106]  V. L. Barsukov Venusian igneous rocks. , 1992 .

[107]  V. Krasnopolsky Total injection of water vapor into the Venus atmosphere , 1985 .

[108]  J. Kasting,et al.  Loss of Water from Venus. I. Hydrodynamic Escape of Hydrogen , 1983 .

[109]  D. Hunten,et al.  Nonthermal escape of hydrogen and deuterium from Venus and implications for loss of water , 1982 .

[110]  M. Ozima,et al.  Activation energy for thermal release of Ar from some DSDP submarine rocks , 1980 .

[111]  Steven W. Squyres,et al.  Venus tectonics: An overview of Magellan observations , 1992 .

[112]  G. Schaber,et al.  Constraints on the thermal evolution of Venus inferred from Magellan data , 1993 .

[113]  G. Schaber,et al.  Impact Craters on Venus: What are they Telling Us? , 1991 .

[114]  N. Sleep Thermal History and Degassing of the Earth: Some Simple Calculations , 1979, The Journal of Geology.

[115]  H. Yurimoto,et al.  Anion and cation partitioning between olivine, plagioclase phenocrysts and the host magma: A new application of ion microprobe study , 1984 .

[116]  T. Latourrette,et al.  Experimental determination of U and Th partitioning between clinopyroxene and natural and synthetic basaltic liquid , 1992 .

[117]  D. Hunten,et al.  Day and night models of the Venus thermosphere , 1983 .