Quantum structural fluxion in superconducting lanthanum polyhydride

[1]  Yu Xie,et al.  High-Temperature Superconducting Phase in Clathrate Calcium Hydride CaH_{6} up to 215 K at a Pressure of 172 GPa. , 2022, Physical review letters.

[2]  C. Pickard,et al.  High T c Superconductivity in Heavy Rare Earth Hydrides , 2021, Chinese Physics Letters.

[3]  S. Mozaffari,et al.  Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure , 2021, Nature Communications.

[4]  E. Zurek,et al.  Synthesis of Yttrium Superhydride Superconductor with a Transition Temperature up to 262 K by Catalytic Hydrogenation at High Pressures. , 2021, Physical review letters.

[5]  Yanming Ma,et al.  High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride , 2020, Nature Communications.

[6]  H. Mao,et al.  Superconductivity in La and Y hydrides: Remaining questions to experiment and theory , 2020, Matter and Radiation at Extremes.

[7]  F. Belli,et al.  Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride , 2019, Nature.

[8]  L. Boeri Understanding Novel Superconductors with Ab Initio Calculations , 2019, Handbook of Materials Modeling.

[9]  T. Cui,et al.  Superconductivity of LaH10 and LaH16 polyhydrides , 2018, Physical Review B.

[10]  W. Pickett,et al.  Compressed hydrides as metallic hydrogen superconductors , 2019, Physical Review B.

[11]  M. Eremets,et al.  Superconducting Hydrides Under Pressure , 2019, 1910.00385.

[12]  H. Mao,et al.  Intermolecular coupling and fluxional behavior of hydrogen in phase IV , 2019, Proceedings of the National Academy of Sciences.

[13]  Jun-Hyung Cho,et al.  Pressure dependence of the superconducting transition temperature of compressed LaH10 , 2019, Physical Review B.

[14]  M. Eremets,et al.  A perspective on conventional high-temperature superconductors at high pressure: Methods and materials , 2019, 1905.06693.

[15]  Da Li,et al.  High-temperature superconductivity in ternary clathrate YCaH12 under high pressures , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  L. Dubrovinsky,et al.  Pressure-Induced Hydrogen-Hydrogen Interaction in Metallic FeH Revealed by NMR , 2019, Physical Review X.

[17]  D. Graf,et al.  Superconductivity at 250 K in lanthanum hydride under high pressures , 2018, Nature.

[18]  Jun-Hyung Cho,et al.  Microscopic mechanism of room-temperature superconductivity in compressed LaH10 , 2018, Physical Review B.

[19]  R. Hemley,et al.  Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. , 2018, Physical review letters.

[20]  J. Tse,et al.  Dynamics and superconductivity in compressed lanthanum superhydride , 2018, Physical Review B.

[21]  Maria Baldini,et al.  Synthesis and Stability of Lanthanum Superhydrides. , 2018, Angewandte Chemie.

[22]  Yanming Ma,et al.  Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. , 2017, Physical review letters.

[23]  Roald Hoffmann,et al.  Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure , 2017, Proceedings of the National Academy of Sciences.

[24]  Ali Sadeghi,et al.  A fingerprint based metric for measuring similarities of crystalline structures. , 2015, The Journal of chemical physics.

[25]  G. Ackland,et al.  Identification of high-pressure phases III and IV in hydrogen: Simulating Raman spectra using molecular dynamics , 2013 .

[26]  R. Hemley,et al.  High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy. , 2013, Physical review letters.

[27]  Yanming Ma,et al.  Proton or deuteron transfer in phase IV of solid hydrogen and deuterium. , 2012, Physical review letters.

[28]  E. Gregoryanz,et al.  Mixed molecular and atomic phase of dense hydrogen. , 2012, Physical review letters.

[29]  Hui Wang,et al.  Superconductive sodalite-like clathrate calcium hydride at high pressures , 2012, Proceedings of the National Academy of Sciences.

[30]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[31]  Chris J. Pickard,et al.  Structure of phase III of solid hydrogen , 2007 .

[32]  P. E. Kornilovitch,et al.  The "crab" bipolaron as a possible route to room temperature superconductivity , 2006 .

[33]  K. Aoki,et al.  Protonic Diffusion in High-Pressure Ice VII , 2002, Science.

[34]  K. Aoki,et al.  Proton Diffusion in High Pressure Ice , 2002 .

[35]  M. Shiga,et al.  A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics , 2001 .

[36]  M. Shiga,et al.  Ab initio molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics , 2000 .

[37]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  R. Dynes,et al.  Transition temperature of strong-coupled superconductors reanalyzed , 1975 .

[42]  P. Hertel TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1971 .

[43]  K. Cheng Theory of Superconductivity , 1948, Nature.

[44]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .