Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors

A detailed theoretical picture is given for the physics of strain effects in bulk semiconductors and surface Si, Ge, and III–V channel metal-oxide-semiconductor field-effect transistors. For the technologically important in-plane biaxial and longitudinal uniaxial stress, changes in energy band splitting and warping, effective mass, and scattering are investigated by symmetry, tight-binding, and k⋅p methods. The results show both types of stress split the Si conduction band while only longitudinal uniaxial stress along ⟨110⟩ splits the Ge conduction band. The longitudinal uniaxial stress warps the conduction band in all semiconductors. The physics of the strain altered valence bands for Si, Ge, and III–V semiconductors are shown to be similar although the strain enhancement of hole mobility is largest for longitudinal uniaxial compression in ⟨110⟩ channel devices and channel materials with substantial differences between heavy and light hole masses such as Ge and GaAs. Furthermore, for all these materials,...

[1]  P. Fejes,et al.  1-$\mu\hbox{m}$ Enhancement Mode GaAs N-Channel MOSFETs With Transconductance Exceeding 250 mS/mm , 2007, IEEE Electron Device Letters.

[2]  S. Thompson,et al.  Measurement of conduction band deformation potential constants using gate direct tunneling current in n-type metal oxide semiconductor field effect transistors under mechanical stress , 2006 .

[3]  S. Thompson,et al.  Uniaxial-process-induced strained-Si: extending the CMOS roadmap , 2006, IEEE Transactions on Electron Devices.

[4]  R. Wise,et al.  Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing , 2006, IEEE Transactions on Electron Devices.

[5]  Scott E. Thompson,et al.  Strain-induced changes in the gate tunneling currents in p-channel metal–oxide–semiconductor field-effect transistors , 2006 .

[6]  G. Karunasiri,et al.  A reliable and manufacturable method to induce a stress of >1 GPa on a P-channel MOSFET in high volume manufacturing , 2006, IEEE Electron Device Letters.

[7]  R. Chau,et al.  In search of "Forever," continued transistor scaling one new material at a time , 2005, IEEE Transactions on Semiconductor Manufacturing.

[8]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[9]  Lucian Shifren,et al.  Quantum mechanical calculation of hole mobility in silicon inversion layers under arbitrary stress , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[10]  S. Satoh,et al.  A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[11]  S. Thompson,et al.  Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[12]  S. T. Ng,et al.  Impact of surface roughness on silicon and germanium ultra-thin-body MOSFETs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[13]  Y. Nishi,et al.  Experimental study of biaxial and uniaxial strain effects on carrier mobility in bulk and ultrathin-body SOI MOSFETs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[14]  P. Bai,et al.  A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 /spl mu/m/sup 2/ SRAM cell , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[15]  J. Fossum,et al.  Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs , 2004, IEEE Electron Device Letters.

[16]  M. Bohr,et al.  A logic nanotechnology featuring strained-silicon , 2004, IEEE Electron Device Letters.

[17]  Gerhard Klimeck,et al.  Valence band effective-mass expressions in the sp 3 d 5 s * empirical tight-binding model applied to a Si and Ge parametrization , 2004 .

[18]  D. Antoniadis,et al.  Implementation of both high-hole and electron mobility in strained Si/strained Si1-yGey on relaxed Si1-xGex (x , 2003, IEEE Electron Device Letters.

[19]  M. Lee,et al.  Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex , 2003 .

[20]  P. Solomon,et al.  Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness , 2003 .

[21]  Saibal Mukhopadhyay,et al.  Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits , 2003, Proc. IEEE.

[22]  M. Fischetti,et al.  On the enhanced electron mobility in strained-silicon inversion layers , 2002 .

[23]  T. Boykin,et al.  Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory , 2002 .

[24]  D. Antoniadis,et al.  Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal-oxide-semiconductor field-effect transistors , 2002 .

[25]  D. M. Riffe Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements , 2002 .

[26]  D. Antoniadis,et al.  Carrier mobilities and process stability of strained Si n- and p-MOSFETs on SiGe virtual substrates , 2001 .

[27]  N. Cavassilas,et al.  Energy-band structure of GaAs and Si: Asps*k⋅pmethod , 2001 .

[28]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[29]  Adrian Stoica,et al.  Si Tight-Binding Parameters from Genetic Algorithm Fitting , 2000 .

[30]  H.S. Tsai,et al.  Demonstration of submicron depletion-mode GaAs MOSFETs with negligible drain current drift and hysteresis , 1999, IEEE Electron Device Letters.

[31]  P. Vogl,et al.  Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET’s , 1998 .

[32]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[33]  W. S. Hobson,et al.  Depletion mode GaAs metal–oxide–semiconductor field effect transistors with Ga2O3(Gd2O3) as the gate oxide , 1998 .

[34]  Fabio Beltram,et al.  Empirical spds^* tight-binding calculation for cubic semiconductors : general method and material parameters , 1998 .

[35]  T. Boykin MORE COMPLETE TREATMENT OF SPIN-ORBIT EFFECTS IN TIGHT-BINDING MODELS , 1998 .

[36]  M. Cardona,et al.  Fundamentals of semiconductors : physics and materials properties , 1997 .

[37]  Gerhard Klimeck,et al.  Effective-mass reproducibility of the nearest-neighbor sp 3 s * models: Analytic results , 1997 .

[38]  Hua-bei Jiang,et al.  High power laser semiconductor interactions: A Monte Carlo study for silicon , 1997 .

[39]  M. Passlack,et al.  Low D/sub it/, thermodynamically stable Ga/sub 2/O/sub 3/-GaAs interfaces: fabrication, characterization, and modeling , 1997 .

[40]  X. Weng The effect of nonparabolicity on electron transport in semiconductor thin films , 1996 .

[41]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[42]  J. Welser,et al.  Comparative study of phonon‐limited mobility of two‐dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field‐effect transistors , 1996 .

[43]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[44]  Rössler,et al.  Band nonparabolicity and three-dimensional aspects in quantum dots on InSb. , 1994, Physical review. B, Condensed matter.

[45]  B. A. Foreman,et al.  Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. , 1993, Physical review. B, Condensed matter.

[46]  Fischetti,et al.  Monte Carlo study of electron transport in silicon inversion layers. , 1993, Physical review. B, Condensed matter.

[47]  T. Vogelsang,et al.  Electron transport in strained Si layers on Si1−xGex substrates , 1993 .

[48]  J. Woo,et al.  High-Mobility p-Channel Metal-Oxide-Semiconductor Field-Effect-Transistor on Strained Si , 1993 .

[49]  D. Ferry,et al.  Electron transport properties of a strained Si layer on a relaxed Si1-xGex substrate by Monte Carlo simulation , 1993 .

[50]  Chuang,et al.  Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[51]  J. Welser,et al.  NMOS and PMOS transistors fabricated in strained silicon/relaxed silicon-germanium structures , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[52]  S. Laux,et al.  Comments on "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. II. Submicrometer MOSFETs" [with reply] , 1991 .

[53]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[54]  Allan,et al.  Band-edge deformation potentials in a tight-binding framework. , 1988, Physical review. B, Condensed matter.

[55]  Darryl L. Smith,et al.  k.p theory of semiconductor superlattice electronic structure. II. Application to Ga 1-x In x As-Al 1-y In y As [100] superlattices , 1986 .

[56]  John C. Bean,et al.  Modulation doping in GexSi1−x/Si strained layer heterostructures , 1984 .

[57]  Calculation of optical- and acoustic-phonon—limited conductivity and Hall mobilities for p -type silicon and germanium , 1983 .

[58]  F. Szmulowicz Acoustic and optical‐phonon‐limited mobilities in p‐type silicon within the deformation‐potential theory , 1983 .

[59]  C. Jacoboni,et al.  The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials , 1983 .

[60]  P. Vogl,et al.  A Semi-empirical tight-binding theory of the electronic structure of semiconductors†☆ , 1983 .

[61]  H. M. Manasevit,et al.  Electron mobility enhancement in epitaxial multilayer Si-Si/1-x/Ge/x/ alloy films on /100/Si , 1982 .

[62]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[63]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[64]  T. Mimura,et al.  A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions , 1980 .

[65]  Walter A. Harrison,et al.  Electronic structure and the properties of solids , 1980 .

[66]  T. Mimura,et al.  Electrical characteristics of the plasma-grown native-oxide/GaAs interface , 1979 .

[67]  Chih-Tang Sah,et al.  New mobility-measurement technique on inverted semiconductor surfaces near the conduction threshold , 1979 .

[68]  M. Schulz,et al.  Transient capacitance measurements of interface states on the intentionally contaminated Si-SiO2 interface , 1979 .

[69]  Y. Shibata,et al.  Effect of native oxide on the interface property of GaAs MIS structures , 1978 .

[70]  R. Chang,et al.  A new method of fabricating gallium arsenide MOS devices , 1978 .

[71]  D. Chadi Spin-orbit splitting in crystalline and compositionally disordered semiconductors , 1977 .

[72]  M. Chandrasekhar,et al.  Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs , 1977 .

[73]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[74]  Marvin L. Cohen,et al.  Tight‐binding calculations of the valence bands of diamond and zincblende crystals , 1975 .

[75]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[76]  F. Stern Self-Consistent Results for n -Type Si Inversion Layers , 1972 .

[77]  P. Lawaetz,et al.  Valence-Band Parameters in Cubic Semiconductors , 1971 .

[78]  J. D. Wiley Polar Mobility of Holes in III-V Compounds , 1971 .

[79]  Fred H. Pollak,et al.  Effects of Uniaxial Stress on the Indirect Exciton Spectrum of Silicon , 1971 .

[80]  Fred H. Pollak,et al.  Piezo-Electroreflectance in Ge, GaAs, and Si , 1968 .

[81]  R. N. Bhargava,et al.  Stress Dependence of Photoluminescence in GaAs , 1967 .

[82]  J. Hensel Quantum effects in the cyclotron resonance of holes in uniaxially stressed germanium , 1966 .

[83]  I. Balslev,et al.  Influence of Uniaxial Stress on the Indirect Absorption Edge in Silicon and Germanium , 1966 .

[84]  Fred H. Pollak,et al.  Energy-Band Structure of Germanium and Silicon: The k [] p Method , 1966 .

[85]  G. Feher,et al.  Cyclotron Resonance Experiments in Uniaxially Stressed Silicon: Valence Band Inverse Mass Parameters and Deformation Potentials , 1963 .

[86]  H. Hasegawa,et al.  Theory of Cyclotron Resonance in Strained Silicon Crystals , 1963 .

[87]  E. Kane Theory of Tunneling , 1961 .

[88]  D. Long Scattering of Conduction Electrons by Lattice Vibrations in Silicon , 1960 .

[89]  W. H. Kleiner,et al.  Deformation Potential in Germanium from Optical Absorption Lines for Exciton Formation , 1959 .

[90]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[91]  J. M. Luttinger Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory , 1956 .

[92]  C. Herring,et al.  Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering , 1956 .

[93]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[94]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[95]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[96]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[97]  W. Shockley Energy Band Structures in Semiconductors , 1950 .

[98]  J. Bardeen,et al.  Energy Bands and Mobilities in Monatomic Semiconductors , 1950 .