FILTRATION OF EFFLUENTS FOR MICROIRRIGATION SYSTEMS

Clogging, measured through head loss across filters, and the filtration quality of different filters using different effluents were studied. The filters used were: 115, 130, and 200 .m disc filters; 98, 115, 130, and 178 .m screen filters; and a sand filter filled with a single layer of sand with an effective diameter of 0.65 mm. The filters were used with a meat industry effluent and secondary and tertiary effluents of two wastewater treatment plants. It was observed that clogging depended on the type of effluent. With the meat industry effluent, the poorest quality effluent, disc filters clogged more than the other filter types. When the wastewater treatment plant effluents were used, the disc filters showed less frequent clogging. Several physical and chemical parameters, such as total suspended solids, chemical oxygen demand, turbidity, electrical conductivity, pH, and number of particles, were analyzed in the effluents at the entry and exit points of the filters. In general, filters did not reduce the values of the main clogging parameters to a great degree. It was found that the parameter that explained the clogging, expressed as Boucher’s filterability index, was different depending on the type of effluent and filter. The best quality of filtration was achieved with a sand filter when the meat industry effluent was used. No significant differences were observed between the quality of filtration of disc and screen filters when operating with the secondary and tertiary effluents.