Insight into the output characteristics of III-V tunneling field effect transistors

The mechanism of the drain current saturation in the output characteristics of III-V tunneling field effect transistor (TFET) is explained in detail using numerical simulations as well as physics-based analytical models. We clearly identify the impact of the source doping on delayed output saturation, and non-linear turn on behavior observed in the output characteristics of TFET. Our model uses Wentzen-Krammel-Brillouin approximation and considers the exponentially decaying potential profile in the channel. The choice of source doping in III-V p-channel TFET requires tradeoff between maintaining steep switching and delayed saturation voltage which is of importance for complementary TFET logic.

[1]  Brinda Bhowmick,et al.  A Physicsbased Model for Electrical Parameters of Double gate Hetero-material Nano Scale Tunnel FET , 2012 .

[2]  Guido Groeseneken,et al.  Modeling the impact of junction angles in tunnel field-effect transistors , 2012 .

[3]  Narayanan Vijaykrishnan,et al.  Variation-tolerant ultra low-power heterojunction tunnel FET SRAM design , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[4]  A. Zaslavsky,et al.  A tunneling field effect transistor model combining interband tunneling with channel transport , 2011 .

[5]  Gerhard Klimeck,et al.  Performance comparisons of tunneling field-effect transistors made of InSb, Carbon, and GaSb-InAs broken gap heterostructures , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[6]  H. Flietner,et al.  The E(k) Relation for a Two‐Band Scheme of Semiconductors and the Application to the Metal‐Semiconductor Contact , 1972 .

[7]  E. Kane Zener tunneling in semiconductors , 1960 .

[8]  S. Datta,et al.  On Enhanced Miller Capacitance Effect in Interband Tunnel Transistors , 2009, IEEE Electron Device Letters.

[9]  A. Ionescu,et al.  Understanding the Superlinear Onset of Tunnel-FET Output Characteristic , 2012, IEEE Electron Device Letters.

[10]  Guido Groeseneken,et al.  A model determining optimal doping concentration and material's band gap of tunnel field-effect transistors , 2012 .

[11]  J. Fastenau,et al.  Demonstration of MOSFET-like on-current performance in arsenide/antimonide tunnel FETs with staggered hetero-junctions for 300mV logic applications , 2011, 2011 International Electron Devices Meeting.

[12]  S. Salahuddin,et al.  Zener tunneling: Congruence between semi-classical and quantum ballistic formalisms , 2012 .

[13]  Rita Rooyackers,et al.  Drain voltage dependent analytical model of tunnel field-effect transistors , 2011 .

[14]  J. Knoch,et al.  Modeling of High-Performance p-Type III–V Heterojunction Tunnel FETs , 2010, IEEE Electron Device Letters.

[15]  G. Dewey,et al.  Fabrication, characterization, and physics of III–V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing , 2011, 2011 International Electron Devices Meeting.

[16]  Lu Liu,et al.  Scaling Length Theory of Double-Gate Interband Tunnel Field-Effect Transistors , 2012, IEEE Transactions on Electron Devices.

[17]  C. van Hoof,et al.  Pseudo-Two-Dimensional Model for Double-Gate Tunnel FETs Considering the Junctions Depletion Regions , 2010, IEEE Transactions on Electron Devices.