On Sparsification for Computing Treewidth
暂无分享,去创建一个
[1] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[2] Dimitrios M. Thilikos,et al. On Exact Algorithms for Treewidth , 2006, ESA.
[3] Russell Impagliazzo,et al. Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..
[4] Jörg Flum,et al. Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.
[5] Stéphan Thomassé,et al. A 4k2 kernel for feedback vertex set , 2010, TALG.
[6] Arie M. C. A. Koster,et al. Safe separators for treewidth , 2006, Discret. Math..
[7] Arie M. C. A. Koster,et al. Safe Reduction Rules for Weighted Treewidth , 2002, Algorithmica.
[8] Dimitrios M. Thilikos,et al. (Meta) Kernelization , 2009, FOCS.
[9] Arie M. C. A. Koster,et al. PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..
[10] Andrew Drucker,et al. New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[11] Fedor V. Fomin,et al. Hitting forbidden minors: Approximation and Kernelization , 2011, STACS.
[12] Stefan Kratsch,et al. Kernel Bounds for Structural Parameterizations of Pathwidth , 2012, SWAT.
[13] Judy Goldsmith,et al. Nondeterminism Within P , 1993, SIAM J. Comput..
[14] Stefan Kratsch,et al. Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..
[15] Xi Wu,et al. Weak compositions and their applications to polynomial lower bounds for kernelization , 2012, SODA.
[16] Stefan Kratsch,et al. Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.
[17] Dániel Marx,et al. Kernelization of packing problems , 2012, SODA.
[18] Michael R. Fellows,et al. On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..
[19] Chee-Keng Yap,et al. Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..
[20] Rolf H. Möhring,et al. Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..
[21] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[22] B. Jansen. The Power of Data Reduction : Kernels for Fundamental Graph Problems , 2013 .
[23] Stefan Kratsch,et al. Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..
[24] Dieter van Melkebeek,et al. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.
[25] Fabrizio Grandoni,et al. Tight Kernel Bounds for Problems on Graphs with Small Degeneracy - (Extended Abstract) , 2013, ESA.