On Sparsification for Computing Treewidth

We investigate whether an n-vertex instance (G,k) of Treewidth, asking whether the graph G has treewidth at most k, can efficiently be made sparse without changing its answer. By giving a special form of OR-cross-composition, we prove that this is unlikely: if there is an e > 0 and a polynomial-time algorithm that reduces n-vertex Treewidth instances to equivalent instances, of an arbitrary problem, with \(\mathcal{O}(n^{2 - \epsilon})\) bits, then NP ⊆ coNP/poly and the polynomial hierarchy collapses to its third level.

[1]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[2]  Dimitrios M. Thilikos,et al.  On Exact Algorithms for Treewidth , 2006, ESA.

[3]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[4]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[5]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[6]  Arie M. C. A. Koster,et al.  Safe separators for treewidth , 2006, Discret. Math..

[7]  Arie M. C. A. Koster,et al.  Safe Reduction Rules for Weighted Treewidth , 2002, Algorithmica.

[8]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, FOCS.

[9]  Arie M. C. A. Koster,et al.  PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..

[10]  Andrew Drucker,et al.  New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[11]  Fedor V. Fomin,et al.  Hitting forbidden minors: Approximation and Kernelization , 2011, STACS.

[12]  Stefan Kratsch,et al.  Kernel Bounds for Structural Parameterizations of Pathwidth , 2012, SWAT.

[13]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[14]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[15]  Xi Wu,et al.  Weak compositions and their applications to polynomial lower bounds for kernelization , 2012, SODA.

[16]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[17]  Dániel Marx,et al.  Kernelization of packing problems , 2012, SODA.

[18]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[19]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[20]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[21]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[22]  B. Jansen The Power of Data Reduction : Kernels for Fundamental Graph Problems , 2013 .

[23]  Stefan Kratsch,et al.  Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..

[24]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[25]  Fabrizio Grandoni,et al.  Tight Kernel Bounds for Problems on Graphs with Small Degeneracy - (Extended Abstract) , 2013, ESA.