Filtering Deterministic Layer Effects in Imaging

We study imaging of compactly supported scatterers buried deep in layered structures. The layering is unknown and consists of strongly reflecting interfaces as well as weakly reflecting fine layers, which we model with random processes. We consider wave scattering regimes where the unwanted echoes from the layers overwhelm the signal coming from the compact scatterers that we wish to image. We enhance this signal with data filtering operators that tend to remove layering effects. We study theoretically the layer annihilator filters using the O'Doherty–Anstey (ODA) theory. It accounts for the random layering by introducing pulse spreading and attenuation in the reflections from the deterministic interfaces. We present numerical simulations in purely layered structures as well as in media with additional isotropic clutter.

[1]  Jean-Pierre Fouque,et al.  Spreading of a Pulse Travelling in Random Media , 1994 .

[2]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[3]  Albert Fannjiang,et al.  Exact localization and superresolution with noisy data and random illumination , 2010, ArXiv.

[4]  B. Borden Mathematical problems in radar inverse scattering , 2002 .

[5]  Eliane Bécache,et al.  Étude d'un nouvel élément fini mixte permettant la condensation de masse , 1997 .

[6]  Liliana Borcea,et al.  Coherent Interferometry in Finely Layered Random Media , 2006, Multiscale Model. Simul..

[7]  Liliana Borcea,et al.  Asymptotics for the Space-Time Wigner Transform with Applications to Imaging , 2007 .

[8]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Josselin Garnier,et al.  A universal filter for enhanced imaging with small arrays , 2009 .

[10]  P. Sheng,et al.  Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Second edition , 1995 .

[11]  Arnaud Derode,et al.  Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration , 2009, 0906.0532.

[12]  A. Derode,et al.  Singular value distribution of the propagation matrix in random scattering media , 2009, 0904.0161.

[13]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[14]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[15]  George Papanicolaou,et al.  Ray theory for a locally layered random medium , 2000 .

[16]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[17]  Biondo L. Biondi,et al.  3D Seismic Imaging , 2006 .

[18]  J. Berryman Stable iterative reconstruction algorithm for nonlinear traveltime tomography , 1990 .

[19]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[20]  N. A. Anstey,et al.  Reflections on AMPLITUDES , 1971 .

[21]  Liliana Borcea,et al.  Adaptive interferometric imaging in clutter and optimal illumination , 2006 .

[22]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[23]  Plamen Stefanov,et al.  Recent progress on the boundary rigidity problem , 2005 .

[24]  Josselin Garnier,et al.  Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .

[25]  George Papanicolaou,et al.  Frequency Content of Randomly Scattered Signals , 1991, SIAM Rev..

[26]  William W. Symes,et al.  All stationary points of differential semblance are asymptotic global minimizers: Layered acoustics 1 , 1999 .

[27]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[28]  E. Slob,et al.  Tutorial on seismic interferometry: Part 2 — Underlying theory and new advances , 2010 .

[29]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[30]  F. Herrmann,et al.  Sparsity- and continuity-promoting seismic image recovery with curvelet frames , 2008 .

[31]  Christiaan C. Stolk,et al.  Microlocal analysis of a seismic linearized inverse problem , 2000 .

[32]  Hongkai Zhao,et al.  Super-resolution in time-reversal acoustics. , 2002, The Journal of the Acoustical Society of America.

[33]  M. V. Rossum,et al.  Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion , 1998, cond-mat/9804141.

[34]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[35]  Guillaume Bal,et al.  Transport-Based Imaging in Random Media , 2008, SIAM J. Appl. Math..

[36]  Liliana Borcea,et al.  Coherent interferometric imaging in clutter , 2006 .

[37]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[38]  Andrey Bakulin,et al.  The virtual source method: Theory and case study , 2006 .

[39]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[40]  Josselin Garnier,et al.  A statistical approach to target detection and localization in the presence of noise , 2012 .

[41]  G. Szegő,et al.  On the Eigen-Values of Certain Hermitian Forms , 1953 .

[42]  Benjamin S. White,et al.  Localization and backscattering spectrum of seismic waves in stratified lithology , 1990 .

[43]  Sergey Fomel,et al.  Poststack velocity analysis by separation and imaging of seismic diffractions , 2007 .

[44]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[45]  George Papanicolaou,et al.  Transport equations for elastic and other waves in random media , 1996 .

[46]  Liliana Borcea,et al.  Filtering Random Layering Effects in Imaging , 2010, Multiscale Model. Simul..

[47]  Arnaud Derode,et al.  Random matrix theory applied to acoustic backscattering and imaging in complex media. , 2009, Physical review letters.

[48]  Patrick Joly,et al.  An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..

[49]  George Papanicolaou,et al.  Statistical Stability in Time Reversal , 2004, SIAM J. Appl. Math..

[50]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .

[51]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[52]  Eric Todd Quinto,et al.  The Radon Transform, Inverse Problems, and Tomography , 2006 .

[53]  S. Mallat A wavelet tour of signal processing , 1998 .

[54]  Jinho Baik,et al.  Asymptotics of Tracy-Widom Distributions and the Total Integral of a Painlevé II Function , 2007, 0704.3636.

[55]  Liliana Borcea,et al.  Optimal illumination and wave form design for imaging in random media. , 2007, The Journal of the Acoustical Society of America.

[56]  Liliana Borcea,et al.  Edge Illumination and Imaging of Extended Reflectors , 2008, SIAM J. Imaging Sci..

[57]  Jon F. Claerbout,et al.  Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting , 1985 .

[58]  Liliana Borcea,et al.  Source Localization in Random Acoustic Waveguides , 2010, Multiscale Model. Simul..