The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances.

[1]  Nathalie Tufenkji,et al.  Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. , 2009, Environmental science & technology.

[2]  Enrique Navarro,et al.  Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. , 2008, Environmental science & technology.

[3]  Jing Luo,et al.  Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms , 2008, Environmental toxicology and chemistry.

[4]  Baoshan Xing,et al.  Root uptake and phytotoxicity of ZnO nanoparticles. , 2008, Environmental science & technology.

[5]  B. Nowack,et al.  Exposure modeling of engineered nanoparticles in the environment. , 2008, Environmental science & technology.

[6]  Paul Westerhoff,et al.  Nanoparticle silver released into water from commercially available sock fabrics. , 2008, Environmental science & technology.

[7]  K. Hungerbühler,et al.  Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. , 2008, The Science of the total environment.

[8]  G. E. Gadd,et al.  Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. , 2007, Environmental science & technology.

[9]  Robert N Grass,et al.  Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. , 2007, Environmental science & technology.

[10]  A. Buma,et al.  The carbohydrates of Phaeocystis and their degradation in the microbial food web , 2007 .

[11]  Aijun Miao,et al.  Predicting copper toxicity with its intracellular or subcellular concentration and the thiol synthesis in a marine diatom. , 2007, Environmental science & technology.

[12]  Jae-Hong Kim,et al.  Natural organic matter stabilizes carbon nanotubes in the aqueous phase. , 2007, Environmental science & technology.

[13]  Pedro J J Alvarez,et al.  Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. , 2006, Water research.

[14]  I. Sabolić,et al.  Common Mechanisms in Nephropathy Induced by Toxic Metals , 2006, Nephron Physiology.

[15]  P. Santschi,et al.  Protective Role of Alginic Acid Against Metal Uptake by American Oyster (Crassostrea virginica) , 2006 .

[16]  Kerstin Hund-Rinke,et al.  Ecotoxic Effect of Photocatalytic Active Nanoparticles (TiO2) on Algae and Daphnids (8 pp) , 2006, Environmental science and pollution research international.

[17]  Ryan C. Templeton,et al.  Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. , 2006, Environmental science & technology.

[18]  Aijun Miao,et al.  Cadmium toxicity to two marine phytoplankton under different nutrient conditions. , 2006, Aquatic toxicology.

[19]  G. Underwood,et al.  EXTRACELLULAR MATRIX ASSEMBLY IN DIATOMS (BACILLARIOPHYCEAE). V. ENVIRONMENTAL EFFECTS ON POLYSACCHARIDE SYNTHESIS IN THE MODEL DIATOM, PHAEODACTYLUM TRICORNUTUM 1 , 2006 .

[20]  Rebecca Klaper,et al.  Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles , 2006, Environmental toxicology and chemistry.

[21]  Robert N Grass,et al.  In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. , 2006, Environmental science & technology.

[22]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[23]  P. Campbell,et al.  Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. , 2005, Aquatic toxicology.

[24]  P. Juneau,et al.  Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse‐amplitude‐modulated fluorometry , 2005, Environmental toxicology and chemistry.

[25]  M. Zachariah,et al.  Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. , 2005, The journal of physical chemistry. B.

[26]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[27]  A. Bacic,et al.  Subcellular location and composition of the wall and secreted extracellular sulphated polysaccharides/proteoglycans of the diatomStauroneis amphioxys Gregory , 1999, Protoplasma.

[28]  Uwe Rascher,et al.  Photosynthesis: Fundamental Aspects to Global Perspectives , 2005 .

[29]  L. Andrade,et al.  Localization of specific monosaccharides in cells of the brown alga Padina gymnospora and the relation to heavy-metal accumulation , 2005, Protoplasma.

[30]  I. Droppo,et al.  Flocculation in Natural and Engineered Environmental Systems , 2004 .

[31]  David L. Kirchman,et al.  The oceanic gel phase: a bridge in the DOM-POM continuum , 2004 .

[32]  J. West,et al.  The Differential Cytotoxicity of Water-Soluble Fullerenes , 2004 .

[33]  E. Magaletti,et al.  Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P-limitation , 2004 .

[34]  E. Oberdörster Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass , 2004, Environmental health perspectives.

[35]  I. Tzovenis,et al.  Cryopreservation of marine microalgae and potential toxicity of cryoprotectants to the primary steps of the aquacultural food chain , 2004 .

[36]  I. Kim,et al.  Polysaccharide-enriched fraction isolated from Duchesnea chrysantha protects against oxidative damage , 2002, Biotechnology Letters.

[37]  R. Pistocchi,et al.  Increased production of extra- and intracellular metal-ligands in phytoplankton exposed to copper and cadmium , 2000, Journal of Applied Phycology.

[38]  A. Reinhardt Contrasting roles of natural organic matter on colloidal stabilization and flocculation in freshwaters , 2004 .

[39]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[40]  E. Granum,et al.  Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion , 2002 .

[41]  J. Reinfelder,et al.  Speciation and Microalgal Bioavailability of Inorganic Silver , 1999 .

[42]  H. Ratte Bioaccumulation and toxicity of silver compounds: A review , 1999 .

[43]  Lind,et al.  Extracellular matrix assembly in diatoms (Bacillariophyceae). Iii. Organization Of fucoglucuronogalactans within the adhesive stalks of achnanthes longipes , 1998, Plant physiology.

[44]  P. Santschi,et al.  Colloidal and Particulate Silver in River and Estuarine Waters of Texas , 1997 .

[45]  David B. Williams,et al.  Transmission Electron Microscopy: A Textbook for Materials Science , 1996 .

[46]  Timothy R. Parsons,et al.  A manual of chemical and biological methods for seawater analysis , 1984 .

[47]  J. Teyssie,et al.  Accumulation and toxicity ol Cd, Zn, Ag, and Hg in four marine phytopiankters , 1984 .

[48]  G. Sposito,et al.  Trace Metal Complexation by Fulvic Acid Extracted from Sewage Sludge: I. Determination of Stability Constants and Linear Correlation Analysis , 1981 .

[49]  W. Sunda The relationship between cupric ion activity and the toxicity of copper to phytoplankton , 1975 .

[50]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.