Loss tolerant device-independent quantum key distribution: a proof of principle

We here present the rate analysis and a proof of principle demonstration of a device-independent quantum key distribution protocol requiring the lowest detection efficiency necessary to achieve a secure key compared to device-independent protocols known so far. The protocol is based on a non-maximally entangled state and its experimental demonstration has been performed by two-photon bipartite entangled states. The improvement with respect to protocols involving maximally entangled states has been estimated.

[1]  G. Vallone,et al.  Bell scenarios in which nonlocality and entanglement are inversely related , 2011, 1106.2240.

[2]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[3]  H. Weinfurter,et al.  Air-to-ground quantum communication , 2013, Nature Photonics.

[4]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[5]  L. Zhang,et al.  Direct and full-scale experimental verifications towards ground–satellite quantum key distribution , 2012, Nature Photonics.

[6]  G. Vallone Einstein-Podolsky-Rosen steering: Closing the detection loophole with non-maximally-entangled states and arbitrary low efficiency , 2012, 1209.5292.

[7]  G. Vallone,et al.  Impact of turbulence in long range quantum and classical communications. , 2012, Physical Review Letters.

[8]  Marco Lucamarini,et al.  Device-independent entanglement-based Bennett 1992 protocol , 2011, 1111.1997.

[9]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[10]  Joseph M. Renes,et al.  One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.

[11]  A. Acín,et al.  Secure device-independent quantum key distribution with causally independent measurement devices. , 2010, Nature communications.

[12]  Jian-Wei Pan,et al.  Decoy-state quantum key distribution with polarized photons over 200 km. , 2010, Optics express.

[13]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[14]  Marco Lucamarini,et al.  Robust unconditionally secure quantum key distribution with two nonorthogonal and uninformative states , 2009 .

[15]  N. Gisin,et al.  High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres , 2009, 0903.3907.

[16]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[17]  Richard J. Hughes,et al.  Practical long-distance quantum key distribution system using decoy levels , 2008, 0806.3085.

[18]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[19]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[20]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[21]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[22]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[23]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[24]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[25]  P R Tapster,et al.  erratum , 2002, Nature.

[26]  Richard J. Hughes,et al.  Practical free-space quantum key distribution over 10 km in daylight and at night , 2002, quant-ph/0206092.

[27]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[28]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[29]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[30]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[31]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .