Smoothed aggregation for Helmholtz problems

We outline a smoothed aggregation algebraic multigrid method for one-dimensional and twodimensional scalar Helmholtz problems with exterior radiation boundary conditions. We consider standard 1D finite difference discretizations and 2D discontinuous Galerkin discretizations. The scalar Helmholtz problem is particularly difficult for algebraic multigrid (AMG) solvers. Not only can the discrete operator be complex-valued, indefinite, and non-self-adjoint, but it also allows for oscillatory error components that yield relatively small residuals. These oscillatory error components are not effectively handled by either standard relaxation or standard coarsening procedures. We address these difficulties through modifications of SA and by providing the SA setup phase with appropriate wavelike near null-space candidates. Much is known a priori about the character of the near null-space, and our method uses this knowledge in an adaptive fashion to find appropriate candidate vectors. Our results for GMRES preconditioned with the proposed SA method exhibit consistent performance for fixed points-per-wavelength and decreasing mesh size. Copyright c © 2000 John Wiley & Sons, Ltd.

[1]  T. Manteuffel,et al.  Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .

[2]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[3]  B. T. Helenbrook,et al.  Application of “ p ”-multigrid to discontinuous Galerkin formulations of the Poisson equation , 2008 .

[4]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..

[5]  Charbel Farhat,et al.  Higher‐order extensions of a discontinuous Galerkin method for mid‐frequency Helmholtz problems , 2004 .

[6]  Luke N. Olson Algebraic Multigrid Preconditioning of High-Order Spectral Elements for Elliptic Problems on a Simplicial Mesh , 2007, SIAM J. Sci. Comput..

[7]  Jacob B. Schroder,et al.  A new perspective on strength measures in algebraic multigrid , 2010, Numer. Linear Algebra Appl..

[8]  Thomas A. Manteuffel,et al.  An energy‐based AMG coarsening strategy , 2006, Numer. Linear Algebra Appl..

[9]  Jinchao Xu,et al.  The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems , 1988 .

[10]  Thomas A. Manteuffel,et al.  First-Order System Least-Squares for the Helmholtz Equation , 1999, SIAM J. Sci. Comput..

[11]  Isaac Harari,et al.  Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics , 1997 .

[12]  Allen C. Robinson,et al.  Toward an h-Independent Algebraic Multigrid Method for Maxwell's Equations , 2006, SIAM J. Sci. Comput..

[13]  Erkki Heikkola,et al.  An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..

[14]  A. Buffa,et al.  Discontinuous Galerkin approximation of the Laplace eigenproblem , 2006 .

[15]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[16]  David Day,et al.  Solving Complex-Valued Linear Systems via Equivalent Real Formulations , 2001, SIAM J. Sci. Comput..

[17]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[18]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..

[19]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[20]  Guido Kanschat,et al.  Preconditioning Methods for Local Discontinuous Galerkin Discretizations , 2003, SIAM J. Sci. Comput..

[21]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[22]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[23]  J. Pasciak,et al.  Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems , 1994 .

[24]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[25]  J. Mandel,et al.  Energy optimization of algebraic multigrid bases , 1999 .

[26]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[27]  Kay Hameyer,et al.  Algebraic multigrid for complex symmetric systems , 2000 .

[28]  Petr Vanek,et al.  Two-level Algebraic Multigrid for the Helmholtz Problem , 1998 .

[29]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[30]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[31]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[32]  H. Simon,et al.  Two Conjugate-Gradient-Type Methods for Unsymmetric Linear Equations , 1988 .

[33]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[34]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[35]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[36]  Ludmil T. Zikatanov,et al.  Two‐level preconditioning of discontinuous Galerkin approximations of second‐order elliptic equations , 2006, Numer. Linear Algebra Appl..

[37]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[38]  Ilaria Perugia,et al.  Local discontinuous Galerkin methods for elliptic problems , 2001 .

[39]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[40]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[41]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[42]  Achi Brandt,et al.  Multigrid method for nearly singular and slightly indefinite problems , 1986 .

[43]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[44]  Allen C. Robinson,et al.  An Improved Algebraic Multigrid Method for Solving Maxwell's Equations , 2003, SIAM J. Sci. Comput..

[45]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[46]  Ralf Hiptmair,et al.  PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .

[47]  Pieter W. Hemker,et al.  Two-Level Fourier Analysis of a Multigrid Approach for Discontinuous Galerkin Discretization , 2003, SIAM J. Sci. Comput..

[48]  Luke N. Olson,et al.  Algebraic multigrid for k‐form Laplacians , 2008, Numer. Linear Algebra Appl..

[49]  Marcus J. Grote,et al.  Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..

[50]  Yair Shapira,et al.  Multigrid Techniques for Highly Indefinite Equations , 1996 .

[51]  Jari Toivanen,et al.  A damping preconditioner for time-harmonic wave equations in fluid and elastic material , 2009, J. Comput. Phys..

[52]  Ivo Babuška,et al.  The generalized finite element method for Helmholtz equation: Theory, computation, and open problems , 2006 .