Smoothed aggregation for Helmholtz problems
暂无分享,去创建一个
[1] T. Manteuffel,et al. Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .
[2] Marian Brezina,et al. Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.
[3] B. T. Helenbrook,et al. Application of “ p ”-multigrid to discontinuous Galerkin formulations of the Poisson equation , 2008 .
[4] Ray S. Tuminaro,et al. A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..
[5] Charbel Farhat,et al. Higher‐order extensions of a discontinuous Galerkin method for mid‐frequency Helmholtz problems , 2004 .
[6] Luke N. Olson. Algebraic Multigrid Preconditioning of High-Order Spectral Elements for Elliptic Problems on a Simplicial Mesh , 2007, SIAM J. Sci. Comput..
[7] Jacob B. Schroder,et al. A new perspective on strength measures in algebraic multigrid , 2010, Numer. Linear Algebra Appl..
[8] Thomas A. Manteuffel,et al. An energy‐based AMG coarsening strategy , 2006, Numer. Linear Algebra Appl..
[9] Jinchao Xu,et al. The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems , 1988 .
[10] Thomas A. Manteuffel,et al. First-Order System Least-Squares for the Helmholtz Equation , 1999, SIAM J. Sci. Comput..
[11] Isaac Harari,et al. Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics , 1997 .
[12] Allen C. Robinson,et al. Toward an h-Independent Algebraic Multigrid Method for Maxwell's Equations , 2006, SIAM J. Sci. Comput..
[13] Erkki Heikkola,et al. An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..
[14] A. Buffa,et al. Discontinuous Galerkin approximation of the Laplace eigenproblem , 2006 .
[15] Cornelis W. Oosterlee,et al. Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..
[16] David Day,et al. Solving Complex-Valued Linear Systems via Equivalent Real Formulations , 2001, SIAM J. Sci. Comput..
[17] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[18] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..
[19] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[20] Guido Kanschat,et al. Preconditioning Methods for Local Discontinuous Galerkin Discretizations , 2003, SIAM J. Sci. Comput..
[21] Dianne P. O'Leary,et al. A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..
[22] Mark Ainsworth,et al. Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .
[23] J. Pasciak,et al. Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems , 1994 .
[24] Thomas A. Manteuffel,et al. Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..
[25] J. Mandel,et al. Energy optimization of algebraic multigrid bases , 1999 .
[26] Mark Ainsworth,et al. Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..
[27] Kay Hameyer,et al. Algebraic multigrid for complex symmetric systems , 2000 .
[28] Petr Vanek,et al. Two-level Algebraic Multigrid for the Helmholtz Problem , 1998 .
[29] S. McCormick,et al. Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .
[30] I. Babuska,et al. Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .
[31] Marian Brezina,et al. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.
[32] H. Simon,et al. Two Conjugate-Gradient-Type Methods for Unsymmetric Linear Equations , 1988 .
[33] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[34] A. Brandt,et al. WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .
[35] Stefan A. Sauter,et al. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..
[36] Ludmil T. Zikatanov,et al. Two‐level preconditioning of discontinuous Galerkin approximations of second‐order elliptic equations , 2006, Numer. Linear Algebra Appl..
[37] David L. Darmofal,et al. p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .
[38] Ilaria Perugia,et al. Local discontinuous Galerkin methods for elliptic problems , 2001 .
[39] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[40] I. Babuska,et al. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .
[41] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[42] Achi Brandt,et al. Multigrid method for nearly singular and slightly indefinite problems , 1986 .
[43] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[44] Allen C. Robinson,et al. An Improved Algebraic Multigrid Method for Solving Maxwell's Equations , 2003, SIAM J. Sci. Comput..
[45] Guido Kanschat,et al. A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.
[46] Ralf Hiptmair,et al. PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .
[47] Pieter W. Hemker,et al. Two-Level Fourier Analysis of a Multigrid Approach for Discontinuous Galerkin Discretization , 2003, SIAM J. Sci. Comput..
[48] Luke N. Olson,et al. Algebraic multigrid for k‐form Laplacians , 2008, Numer. Linear Algebra Appl..
[49] Marcus J. Grote,et al. Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..
[50] Yair Shapira,et al. Multigrid Techniques for Highly Indefinite Equations , 1996 .
[51] Jari Toivanen,et al. A damping preconditioner for time-harmonic wave equations in fluid and elastic material , 2009, J. Comput. Phys..
[52] Ivo Babuška,et al. The generalized finite element method for Helmholtz equation: Theory, computation, and open problems , 2006 .