X-ray diffraction study of the reverse martensitic transformation in NiTi shape memory thin films

[1]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[2]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[3]  G. Kneer,et al.  Über die Berechnung der Elastizitätsmoduln vielkristalliner Aggregate mit Textur , 1965, June 1.

[4]  D. J. Johnson,et al.  Crystallinity and crystallite size measurement in cellulose fibres: 1. Ramie and Fortisan , 1972 .

[5]  John A. Thornton,et al.  Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings , 1974 .

[6]  Srinivasan Sridharan,et al.  Investigations within the quaternary system titanium-nickel-aluminium-carbon , 1983 .

[7]  S. Miyazaki,et al.  CRYSTAL STRUCTURE OF THE MARTENSITE IN Ti-49.2 at.%Ni ALLOY ANALYZED BY THE SINGLE CRYSTAL X-RAY DIFFRACTION METHOD , 1985 .

[8]  W. A. Dollase,et al.  Correction of intensities for preferred orientation in powder diffractometry: application of the March model , 1986 .

[9]  Z. Lekston,et al.  Effect of thermal cycling and Ti2Ni precipitation on the stability of the Ni-Ti alloys , 1987 .

[10]  V. Speriosu,et al.  X-ray diffraction studies of thin films and multilayer structures , 1989 .

[11]  David A. Stevenson,et al.  Shape‐memory properties in Ni‐Ti sputter‐deposited film , 1990 .

[12]  W. Assmus,et al.  Elastic properties of NiTi , 1991 .

[13]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[14]  P. Krulevitch,et al.  A practical microgripper by fine alignment, eutectic bonding and SMA actuation , 1995 .

[15]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[16]  Y. Chumlyakov,et al.  A comparative study of elastic constants of Ti-Ni-based alloys prior to martensitic transformation , 2001 .

[17]  Thomas Pardoen,et al.  The macro- and micromechanics of TRIP-assisted multiphase steels, experiments and modeling , 2001 .

[18]  G. Eggeler,et al.  Neutron diffraction phase analysis during thermal cycling of a Ni-rich NiTi shape memory alloy using the Rietveld method , 2002 .

[19]  Carmelo Giacovazzo,et al.  Fundamentals of Crystallography , 2002 .

[20]  Xu Huang,et al.  Some factors affecting the properties of sputter deposited NiTi-based shape memory alloy thin films , 2002, SPIE Micro + Nano Materials, Devices, and Applications.

[21]  H. Du,et al.  Relaxation and recovery of stress during martensite transformation for sputtered shape memory TiNi film , 2002 .

[22]  R. V. Von Dreele,et al.  Use of the generalized spherical harmonic model for describing crystallographic texture in polycrystalline NiTi shape-memory alloy with time-of-flight neutron powder diffraction data , 2002 .

[23]  U. Welzel,et al.  The determination of stresses in thin films; modelling elastic grain interaction , 2003 .

[24]  H. Du,et al.  Effects of film composition and annealing on residual stress evolution for shape memory TiNi film , 2003 .

[25]  Phase fractions of B2, B19′, R-phase and Ni4Ti3 in NiTi alloys during two-step phase transformations , 2003 .

[26]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[27]  U. Welzel,et al.  Diffraction stress analysis of macroscopically elastically anisotropic specimens: On the concepts of diffraction elastic constants and stress factors , 2003 .

[28]  The influence of temperature on lattice parameters of coexisting phases in NiTi shape memory alloys—a neutron diffraction study , 2004 .

[29]  S. Phillips,et al.  Quantitative phase transformation behavior in TiNi shape memory alloy thin films , 2004 .

[30]  Arnold C. Vermeulen,et al.  Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction , 2005 .

[31]  H. Du,et al.  On the lower thickness boundary of sputtered TiNi films for shape memory application , 2006 .

[32]  Vidyashankar R. Buravalla,et al.  Differential and integrated form consistency in 1-D phenomenological models for shape memory alloy constitutive behavior , 2007 .

[33]  K. K. Mahesh,et al.  Effect of thermal cycling on the shape memory transformation behavior of NiTi alloy: Powder X-ray diffraction study , 2007 .

[34]  C. Urbina,et al.  Effect of thermal cycling on the thermomechanical behaviour of NiTi shape memory alloys , 2009 .

[35]  Marcus L. Young,et al.  Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading , 2010 .

[36]  F. Gispert-Guirado,et al.  Quantitative XRD analysis of the evolution of the TiNi phase transformation behaviour in relation to thermal treatments , 2010 .

[37]  J. Humbeeck,et al.  Isothermal and athermal martensitic transformations in the B2–R–B19′ sequence in Ni–Ti shape memory alloys , 2010 .

[38]  Influence of Substrate Temperature and Deposition Rate on Structural and Mechanical Properties of Shape Memory NiTi Films , 2010 .

[39]  E. .. Mittemeijer,et al.  Kinetics of the allotropic hcp–fcc phase transformation in cobalt , 2011 .

[40]  E. .. Mittemeijer Fundamentals of Materials Science , 2011 .