Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

[1]  P. Morris,et al.  What, How, and Why , 2015, North Carolina Medical Journal.

[2]  R. Krishna,et al.  A microporous metal-organic framework with rare lvt topology for highly selective C2H2/C2H4 separation at room temperature. , 2015, Chemical communications.

[3]  C. Tang,et al.  Supramolecular binding and separation of hydrocarbons within a functionalized porous metal-organic framework. , 2015, Nature chemistry.

[4]  R. Krishna Separating mixtures by exploiting molecular packing effects in microporous materials. , 2015, Physical chemistry chemical physics : PCCP.

[5]  Omar K. Farha,et al.  Metal-organic frameworks for oxygen storage. , 2014, Angewandte Chemie.

[6]  Wei Zhou,et al.  Porous Metal-Organic Frameworks for Gas Storage and Separation: What, How, and Why? , 2014, The journal of physical chemistry letters.

[7]  P. F. Martin,et al.  Fluorocarbon adsorption in hierarchical porous frameworks , 2014, Nature Communications.

[8]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[9]  T. Yildirim,et al.  A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. , 2014, Journal of the American Chemical Society.

[10]  R. Krishna The Maxwell–Stefan description of mixture diffusion in nanoporous crystalline materials , 2014 .

[11]  Zhan Shi,et al.  Metal-cation-directed de novo assembly of a functionalized guest molecule in the nanospace of a metal-organic framework. , 2014, Journal of the American Chemical Society.

[12]  S. Sakaki,et al.  Self-Accelerating CO Sorption in a Soft Nanoporous Crystal , 2014, Science.

[13]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[14]  P. Feng,et al.  Selective anion exchange with nanogated isoreticular positive metal-organic frameworks , 2013, Nature Communications.

[15]  T. Laird March’s Advanced Organic Chemistry, 7th ed. , 2013 .

[16]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[17]  Perla B. Balbuena,et al.  Porous materials with pre-designed single-molecule traps for CO2 selective adsorption , 2013, Nature Communications.

[18]  R. Krishna,et al.  Microporous metal-organic frameworks for storage and separation of small hydrocarbons. , 2012, Chemical communications.

[19]  R. Krishna,et al.  Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons , 2012 .

[20]  D. Farrusseng,et al.  Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. , 2012, Journal of the American Chemical Society.

[21]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[22]  R. Krishna,et al.  Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules. , 2012, Journal of the American Chemical Society.

[23]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[24]  R. Snurr,et al.  Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)] (bpy-1 = 4,4'-bipyridine; bpy-2 = 1,2-bis(4-pyridyl)ethene). , 2012, Journal of the American Chemical Society.

[25]  Guanghua Li,et al.  Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. , 2012, Angewandte Chemie.

[26]  P. Feng,et al.  Single-walled polytetrazolate metal-organic channels with high density of open nitrogen-donor sites and gas uptake. , 2012, Journal of the American Chemical Society.

[27]  Joanne I. Yeh,et al.  Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework , 2012, Nature Communications.

[28]  Yue‐Biao Zhang,et al.  Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology , 2012, Nature Communications.

[29]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[30]  Qiang Xu,et al.  Mesoporous Metal‐Organic Frameworks with Size‐tunable Cages: Selective CO2 Uptake, Encapsulation of Ln3+ Cations for Luminescence, and Column‐Chromatographic Dye Separation , 2011, Advanced materials.

[31]  Rajamani Krishna,et al.  Screening metal–organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber , 2011 .

[32]  A. Slawin,et al.  Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework. , 2011, Nature chemistry.

[33]  Zhangjing Zhang,et al.  Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. , 2011, Nature communications.

[34]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[35]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[36]  W. Zhou,et al.  Open metal sites within isostructural metal-organic frameworks for differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature. , 2010, Angewandte Chemie.

[37]  G. Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[38]  H. Furukawa,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[39]  Wei Zhou,et al.  Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites. , 2009, Journal of the American Chemical Society.

[40]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  Hong‐Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[42]  Jie‐Peng Zhang,et al.  Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. , 2009, Journal of the American Chemical Society.

[43]  Wenbin Lin,et al.  Highly porous and robust 4,8-connected metal-organic frameworks for hydrogen storage. , 2009, Journal of the American Chemical Society.

[44]  Thomas Bligaard,et al.  Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene , 2008, Science.

[45]  K. Gubbins,et al.  Fast method for computing pore size distributions of model materials. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[46]  C. Liang,et al.  A microporous metal-organic framework for gas-chromatographic separation of alkanes. , 2006, Angewandte Chemie.

[47]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[48]  O. Ivashkevich,et al.  Synthesis of New Functionally Substituted 1-R-tetrazoles and Their 5-Amino Derivatives , 2005 .

[49]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[50]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[51]  S. Sircar,et al.  Gas Separation by Zeolites , 2003 .

[52]  P. J. Cox Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn., J.I. Kroschwitz, M. Howe-Grant (Eds.), in: Imaging Technology to Lanthanides, Volume 14. Wiley, New York (1995), xxviii, 0-471-52683-5 , 1996 .

[53]  H. Pearce Zeolite molecular sieves—Structure, chemistry and use , 1975 .

[54]  Zhiyong Guo,et al.  A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. , 2011, Angewandte Chemie.

[55]  W. Tysoe,et al.  The Hydrogenation of Acetylene Catalyzed by Palladium: Hydrogen Pressure Dependence , 1999 .

[56]  F. Halliday Is the sky the limit , 1996 .

[57]  R. F. Stebar,et al.  Evaluation of acetylene as a spark ignition engine fuel , 1979 .

[58]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .