Orthonormal wavelet bases adapted for partial differential equations with boundary conditions

We adapt ideas presented by Auscher to impose boundary conditions on the construction of multiresolution analyses on the interval, as introduced by Cohen, Daubechies, and Vial. We construct new orthonormal wavelet bases on the interval satisfying homogeneous boundary conditions. This construction can be extended to wavelet packets in the case of one boundary condition at each edge. We present in detail the numerical computation of the filters and the derivative operators associated with these bases. We derive quadrature formulae in order to study the approximation error at the edge of the interval. Several examples illustrate the present construction.

[1]  Ondelettes sur l'intervalle pour la prise en compte de conditions aux limites , 1995 .

[2]  Roland Masson,et al.  BIORTHOGONAL SPLINE WAVELETS ON THE INTERVAL FOR THE RESOLUTION OF BOUNDARY PROBLEMS , 1996 .

[3]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[4]  N. Charton,et al.  A Pseudo-Wavelet Scheme for theTwo-Dimensional , 2007 .

[5]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[6]  R. DeVore,et al.  Multiscale decompositions on bounded domains , 2000 .

[7]  Silvia Bertoluzza,et al.  Wavelet Methods for the Numerical Solution of Boundary Value Problems on the Interval , 1994 .

[8]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[9]  DaubechiesIngrid Orthonormal bases of compactly supported wavelets II , 1993 .

[10]  Y. Meyer,et al.  Bases d'ondelettes dans des ouverts de Rn , 1989 .

[11]  Gerlind Plonka-Hoch,et al.  On the construction of wavelets on a bounded interval , 1995, Adv. Comput. Math..

[12]  S. Jaffard Wavelet methods for fast resolution of elliptic problems , 1992 .

[13]  G. Beylkin On the representation of operators in bases of compactly supported wavelets , 1992 .

[14]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[15]  G. Chiavassa,et al.  On the Effective Construction of Compactly Supported Wavelets Satisfying Homogenous Boundary Conditions on the Interval. , 1997 .

[16]  W. Sweldens,et al.  Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions , 1994 .

[17]  Sônia M. Gomes,et al.  Convergence estimates for the wavelet-Galerkin method: superconvergence at the node points , 1995 .

[18]  C. Micchelli,et al.  Using the refinement equation for evaluating integrals of wavelets , 1993 .

[19]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[20]  Y. Maday,et al.  Adaptativité par ondelettes : conditions aux limites et dimensions supérieures , 1992 .

[21]  P. Auscher,et al.  Compactly Supported Wavelets and Boundary Conditions , 1993 .

[22]  Y. Maday,et al.  ADAPTATIVITE DYNAMIQUE SUR BASES D'ONDELETTES POUR L'APPROXIMATION D'EQUATIONS AUX DERIVEES PARTIELLES , 1991 .